migrate old compiler, hack on that instead

This commit is contained in:
zongor 2025-05-04 14:51:38 -04:00
parent 9d65790e5d
commit ae665d89ed
21 changed files with 2300 additions and 467 deletions

View File

@ -1,4 +1,4 @@
* /ztl/ (zongors transpiler language) Design parameters
* /ZTL/ (Zongors Transpiler Language) Design parameters
:PROPERTIES:
:CUSTOM_ID: ztl-zongors-transpiler-language-design-parameters
:END:
@ -12,7 +12,7 @@ systems. /ztl/ also can "run" standalone inside of a lua vm for
debugging purposes, it could be used for small scripting tasks or the
like.
* /ztl/ Grammar and Specification
* /ZTL/ Grammar and Specification
:PROPERTIES:
:CUSTOM_ID: ztl-grammar-and-specification
:END:
@ -33,7 +33,7 @@ type «token» {
}
#+end_src ztl
* Substantial Types
* Basic Types
:PROPERTIES:
:CUSTOM_ID: substantial-types
:END:
@ -41,39 +41,9 @@ type «token» {
:PROPERTIES:
:CUSTOM_ID: numeric
:END:
*** bit (or unsigned units)
:PROPERTIES:
:CUSTOM_ID: bit-or-unsigned-units
:END:
- =u8=
- =byte=
- unsigned 8 bit integer (uint8_t)
- =u16=
- unsigned 16 bit integer (uint16_t)
- =u32=
- unsigned 32 bit integer (uint32_t)
- =u64=
- unsigned 64 bit integer (uint64_t)
*** integer (signed)
:PROPERTIES:
:CUSTOM_ID: integer-signed
:END:
- =i8=
- signed 8 bit integer (int8_t)
- =i16=
- signed 16 bit integer (int16_t)
- =i32=
- signed 32 bit integer (int32_t)
- =i64=
- signed 64 bit integer (int64_t)
*** real
:PROPERTIES:
:CUSTOM_ID: real
:END:
- =f32=
- 32 bit floating point (float)
- =f64=
- =number=
- 64 bit floating point (double)
** string
@ -157,8 +127,6 @@ The following is a list of global operators and their effect:
- =//=
- comment
- =/**/=
- block comment
- =??=
- unwrap or
- =+=
@ -205,14 +173,8 @@ The following is a list of global operators and their effect:
:PROPERTIES:
:CUSTOM_ID: logical-bitwise-operators
:END:
- =eq=
- equal to
- =ne=
- not equals to
- =mod=
- modulo
- =not=
- logical not
- =and=
- logical and
- =or=
@ -255,10 +217,6 @@ if («token» is i32) {
also used for letting constants
#+begin_src ztl
const PURPLE is Color(255, 255, 0);
#+end_src ztl
=as=
coerces a type as another type if possible

View File

@ -1,16 +1,16 @@
#include <stdlib.h>
#include "chunk.h"
#include "memory.h"
#include "vm.h"
void newChunk(Chunk* chunk) {
void initChunk(Chunk* chunk) {
chunk->count = 0;
chunk->capacity = 0;
chunk->code = NULL;
chunk->lines = NULL;
newValueArray(&chunk->constants);
chunk->code = NULL;
initValueArray(&chunk->constants);
}
void writeChunk(Chunk *chunk, uint8_t byte, int line) {
void writeChunk(Chunk* chunk, uint8_t byte, int line) {
if (chunk->capacity < chunk->count + 1) {
int oldCapacity = chunk->capacity;
chunk->capacity = GROW_CAPACITY(oldCapacity);
@ -25,15 +25,16 @@ void writeChunk(Chunk *chunk, uint8_t byte, int line) {
chunk->count++;
}
void freeChunk(Chunk *chunk) {
void freeChunk(Chunk* chunk) {
FREE_ARRAY(uint8_t, chunk->code, chunk->capacity);
FREE_ARRAY(int, chunk->lines, chunk->capacity);
freeValueArray(&chunk->constants);
newChunk(chunk);
initChunk(chunk);
}
int addConstant(Chunk* chunk, Value value) {
push(value);
writeValueArray(&chunk->constants, value);
pop();
return chunk->constants.count - 1;
}

View File

@ -1,16 +1,24 @@
#ifndef ztl_chunk_h
#define ztl_chunk_h
#ifndef zlc_chunk_h
#define zlc_chunk_h
#include "common.h"
#include "memory.h"
#include "value.h"
typedef enum {
OP_NOOP,
OP_CONSTANT,
OP_NIL,
OP_TRUE,
OP_FALSE,
OP_POP,
OP_GET_LOCAL,
OP_GET_GLOBAL,
OP_DEFINE_GLOBAL,
OP_SET_LOCAL,
OP_SET_GLOBAL,
OP_GET_UPVALUE,
OP_SET_UPVALUE,
OP_GET_PROPERTY,
OP_SET_PROPERTY,
OP_EQUAL,
OP_GREATER,
OP_LESS,
@ -20,10 +28,20 @@ typedef enum {
OP_DIVIDE,
OP_NOT,
OP_NEGATE,
OP_RETURN,
OP_PRINT,
OP_JUMP,
OP_JUMP_IF_FALSE,
OP_LOOP,
OP_CALL,
OP_INVOKE,
OP_CLOSURE,
OP_CLOSE_UPVALUE,
OP_RETURN,
OP_TYPE,
OP_METHOD
} OpCode;
typedef struct Chunk {
typedef struct {
int count;
int capacity;
uint8_t *code;
@ -31,7 +49,7 @@ typedef struct Chunk {
ValueArray constants;
} Chunk;
void newChunk(Chunk *chunk);
void initChunk(Chunk *chunk);
void freeChunk(Chunk *chunk);
void writeChunk(Chunk *chunk, uint8_t byte, int line);
int addConstant(Chunk *chunk, Value value);

View File

@ -1,11 +1,16 @@
#ifndef ztl_common_h
#define ztl_common_h
#ifndef zlc_common_h
#define zlc_common_h
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#define DEBUG_TRACE_EXECUTION
#define DEBUG_PRINT_CODE
/* #define DEBUG_TRACE_EXECUTION */
/* #define DEBUG_PRINT_CODE */
/* #define DEBUG_STRESS_GC */
/* #define DEBUG_LOG_GC */
#define UINT8_COUNT (UINT8_MAX + 1)
#endif

View File

@ -1,8 +1,10 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compiler.h"
#include "memory.h"
#include "scanner.h"
#ifdef DEBUG_PRINT_CODE
@ -18,19 +20,19 @@ typedef struct {
typedef enum {
PREC_NONE,
PREC_ASSIGNMENT, // =
PREC_OR, // or
PREC_AND, // and
PREC_EQUALITY, // == !=
PREC_COMPARISON, // < > <= >=
PREC_TERM, // + -
PREC_FACTOR, // * /
PREC_UNARY, // ! -
PREC_CALL, // . ()
PREC_ASSIGNMENT, // =
PREC_OR, // or
PREC_AND, // and
PREC_EQUALITY, // == !=
PREC_COMPARISON, // < > <= >=
PREC_TERM, // + -
PREC_FACTOR, // * /
PREC_UNARY, // ! -
PREC_CALL, // . ()
PREC_PRIMARY
} Precedence;
typedef void (*ParseFn)();
typedef void (*ParseFn)(bool canAssign);
typedef struct {
ParseFn prefix;
@ -38,15 +40,47 @@ typedef struct {
Precedence precedence;
} ParseRule;
typedef struct {
Token name;
int depth;
bool isCaptured;
} Local;
typedef struct {
uint8_t index;
bool isLocal;
} Upvalue;
typedef enum {
TYPE_FUNCTION,
TYPE_INITIALIZER,
TYPE_METHOD,
TYPE_SCRIPT
} FunctionType;
typedef struct Compiler {
struct Compiler *enclosing;
ObjFunction *function;
FunctionType type;
Local locals[UINT8_COUNT];
int localCount;
Upvalue upvalues[UINT8_COUNT];
int scopeDepth;
} Compiler;
typedef struct TypeCompiler {
struct TypeCompiler *enclosing;
} TypeCompiler;
Parser parser;
Chunk* compilingChunk;
Compiler *current = NULL;
TypeCompiler *currentType = NULL;
static Chunk* currentChunk() {
return compilingChunk;
}
static Chunk *currentChunk() { return &current->function->chunk; }
static void errorAt(Token* token, const char* message) {
if (parser.panicMode) return;
static void errorAt(Token *token, const char *message) {
if (parser.panicMode)
return;
parser.panicMode = true;
fprintf(stderr, "[line %d] Error", token->line);
@ -62,11 +96,9 @@ static void errorAt(Token* token, const char* message) {
parser.hadError = true;
}
static void error(const char* message) {
errorAt(&parser.previous, message);
}
static void error(const char *message) { errorAt(&parser.previous, message); }
static void errorAtCurrent(const char* message) {
static void errorAtCurrent(const char *message) {
errorAt(&parser.current, message);
}
@ -75,13 +107,14 @@ static void advance() {
for (;;) {
parser.current = scanToken();
if (parser.current.type != TOKEN_ERROR) break;
if (parser.current.type != TOKEN_ERROR)
break;
errorAtCurrent(parser.current.start);
}
}
static void consume(TokenType type, const char* message) {
static void consume(TokenType type, const char *message) {
if (parser.current.type == type) {
advance();
return;
@ -90,6 +123,15 @@ static void consume(TokenType type, const char* message) {
errorAtCurrent(message);
}
static bool check(TokenType type) { return parser.current.type == type; }
static bool match(TokenType type) {
if (!check(type))
return false;
advance();
return true;
}
static void emitByte(uint8_t byte) {
writeChunk(currentChunk(), byte, parser.previous.line);
}
@ -99,7 +141,31 @@ static void emitBytes(uint8_t byte1, uint8_t byte2) {
emitByte(byte2);
}
static void emitLoop(int loopStart) {
emitByte(OP_LOOP);
int offset = currentChunk()->count - loopStart + 2;
if (offset > UINT16_MAX)
error("Loop body too large.");
emitByte((offset >> 8) & 0xff);
emitByte(offset & 0xff);
}
static int emitJump(uint8_t instruction) {
emitByte(instruction);
emitByte(0xff);
emitByte(0xff);
return currentChunk()->count - 2;
}
static void emitReturn() {
if (current->type == TYPE_INITIALIZER) {
emitBytes(OP_GET_LOCAL, 0);
} else {
emitByte(OP_NIL);
}
emitByte(OP_RETURN);
}
@ -117,63 +183,628 @@ static void emitConstant(Value value) {
emitBytes(OP_CONSTANT, makeConstant(value));
}
static void endCompiler() {
static void patchJump(int offset) {
// -2 to adjust for the bytecode for the jump offset itself.
int jump = currentChunk()->count - offset - 2;
if (jump > UINT16_MAX) {
error("Too much code to jump over.");
}
currentChunk()->code[offset] = (jump >> 8) & 0xff;
currentChunk()->code[offset + 1] = jump & 0xff;
}
static void initCompiler(Compiler *compiler, FunctionType type) {
compiler->enclosing = current;
compiler->function = NULL;
compiler->type = type;
compiler->localCount = 0;
compiler->scopeDepth = 0;
compiler->function = newFunction();
current = compiler;
if (type != TYPE_SCRIPT) {
current->function->name =
copyString(parser.previous.start, parser.previous.length);
}
Local *local = &current->locals[current->localCount++];
local->depth = 0;
local->isCaptured = false;
if (type != TYPE_FUNCTION) {
local->name.start = "this";
local->name.length = 4;
} else {
local->name.start = "";
local->name.length = 0;
}
}
static ObjFunction *endCompiler() {
emitReturn();
ObjFunction *function = current->function;
#ifdef DEBUG_PRINT_CODE
if (!parser.hadError) {
disassembleChunk(currentChunk(), "code");
disassembleChunk(currentChunk(), function->name != NULL
? function->name->chars
: "<script>");
}
#endif
current = current->enclosing;
return function;
}
static void beginScope() { current->scopeDepth++; }
static void endScope() {
current->scopeDepth--;
while (current->localCount > 0 &&
current->locals[current->localCount - 1].depth > current->scopeDepth) {
if (current->locals[current->localCount - 1].isCaptured) {
emitByte(OP_CLOSE_UPVALUE);
} else {
emitByte(OP_POP);
}
current->localCount--;
}
}
static void expression();
static ParseRule* getRule(TokenType type);
static void statement();
static void declaration();
static ParseRule *getRule(TokenType type);
static void parsePrecedence(Precedence precedence);
static void namedVariable(Token name, bool canAssign);
static void expression() {
parsePrecedence(PREC_ASSIGNMENT);
static void binary(bool canAssign) {
TokenType operatorType = parser.previous.type;
ParseRule *rule = getRule(operatorType);
parsePrecedence((Precedence)(rule->precedence + 1));
switch (operatorType) {
case TOKEN_BANG_EQUAL:
emitBytes(OP_EQUAL, OP_NOT);
break;
case TOKEN_EQUAL_EQUAL:
emitByte(OP_EQUAL);
break;
case TOKEN_GREATER:
emitByte(OP_GREATER);
break;
case TOKEN_GREATER_EQUAL:
emitBytes(OP_LESS, OP_NOT);
break;
case TOKEN_LESS:
emitByte(OP_LESS);
break;
case TOKEN_LESS_EQUAL:
emitBytes(OP_GREATER, OP_NOT);
break;
case TOKEN_PLUS:
emitByte(OP_ADD);
break;
case TOKEN_MINUS:
emitByte(OP_SUBTRACT);
break;
case TOKEN_STAR:
emitByte(OP_MULTIPLY);
break;
case TOKEN_SLASH:
emitByte(OP_DIVIDE);
break;
default:
return; // Unreachable.
}
}
static void grouping() {
static uint8_t argumentList() {
uint8_t argCount = 0;
if (!check(TOKEN_RIGHT_PAREN)) {
do {
expression();
if (argCount == 255) {
error("Can't have more than 255 arguments.");
}
argCount++;
} while (match(TOKEN_COMMA));
}
consume(TOKEN_RIGHT_PAREN, "Expect ')' after arguments.");
return argCount;
}
static void call(bool canAssign) {
uint8_t argCount = argumentList();
emitBytes(OP_CALL, argCount);
}
static void literal(bool canAssign) {
switch (parser.previous.type) {
case TOKEN_FALSE:
emitByte(OP_FALSE);
break;
case TOKEN_NIL:
emitByte(OP_NIL);
break;
case TOKEN_TRUE:
emitByte(OP_TRUE);
break;
default:
return; // Unreachable.
}
}
static void expression() { parsePrecedence(PREC_ASSIGNMENT); }
static void block() {
while (!check(TOKEN_RIGHT_BRACE) && !check(TOKEN_EOF)) {
declaration();
}
consume(TOKEN_RIGHT_BRACE, "Expect '}' after block.");
}
static uint8_t identifierConstant(Token *name) {
return makeConstant(OBJ_VAL(copyString(name->start, name->length)));
}
static bool identifiersEqual(Token *a, Token *b) {
if (a->length != b->length)
return false;
return memcmp(a->start, b->start, a->length) == 0;
}
static void dot(bool canAssign) {
consume(TOKEN_IDENTIFIER, "Expect property name after '.'.");
uint8_t name = identifierConstant(&parser.previous);
if (canAssign && match(TOKEN_EQUAL)) {
expression();
emitBytes(OP_SET_PROPERTY, name);
} else if (match(TOKEN_LEFT_PAREN)) {
uint8_t argCount = argumentList();
emitBytes(OP_INVOKE, name);
emitByte(argCount);
} else {
emitBytes(OP_GET_PROPERTY, name);
}
}
static int resolveLocal(Compiler *compiler, Token *name) {
for (int i = compiler->localCount - 1; i >= 0; i--) {
Local *local = &compiler->locals[i];
if (identifiersEqual(name, &local->name)) {
if (local->depth == -1) {
error("Can't read local variable in its own initializer.");
}
return i;
}
}
return -1;
}
static int addUpvalue(Compiler *compiler, uint8_t index, bool isLocal) {
int upvalueCount = compiler->function->upvalueCount;
for (int i = 0; i < upvalueCount; i++) {
Upvalue *upvalue = &compiler->upvalues[i];
if (upvalue->index == index && upvalue->isLocal == isLocal) {
return i;
}
}
if (upvalueCount == UINT8_COUNT) {
error("Too many closure variables in function.");
return 0;
}
compiler->upvalues[upvalueCount].isLocal = isLocal;
compiler->upvalues[upvalueCount].index = index;
return compiler->function->upvalueCount++;
}
static int resolveUpvalue(Compiler *compiler, Token *name) {
if (compiler->enclosing == NULL)
return -1;
int local = resolveLocal(compiler->enclosing, name);
if (local != -1) {
compiler->enclosing->locals[local].isCaptured = true;
return addUpvalue(compiler, (uint8_t)local, true);
}
int upvalue = resolveUpvalue(compiler->enclosing, name);
if (upvalue != -1) {
return addUpvalue(compiler, (uint8_t)upvalue, false);
}
return -1;
}
static void addLocal(Token name) {
if (current->localCount == UINT8_COUNT) {
error("Too many local variables in function.");
return;
}
Local *local = &current->locals[current->localCount++];
local->name = name;
local->depth = -1;
local->isCaptured = false;
}
static void declareVariable() {
if (current->scopeDepth == 0)
return;
Token *name = &parser.previous;
for (int i = current->localCount - 1; i >= 0; i--) {
Local *local = &current->locals[i];
if (local->depth != -1 && local->depth < current->scopeDepth) {
break;
}
if (identifiersEqual(name, &local->name)) {
error("Already a variable with this name in this scope.");
}
}
addLocal(*name);
}
static uint8_t parseVariable(const char *errorMessage) {
consume(TOKEN_IDENTIFIER, errorMessage);
declareVariable();
if (current->scopeDepth > 0)
return 0;
return identifierConstant(&parser.previous);
}
static void markInitialized() {
if (current->scopeDepth == 0)
return;
current->locals[current->localCount - 1].depth = current->scopeDepth;
}
static void defineVariable(uint8_t global) {
if (current->scopeDepth > 0) {
markInitialized();
return;
}
emitBytes(OP_DEFINE_GLOBAL, global);
}
static void function(FunctionType type) {
Compiler compiler;
initCompiler(&compiler, type);
beginScope();
consume(TOKEN_LEFT_PAREN, "Expect '(' after function name.");
if (!check(TOKEN_RIGHT_PAREN)) {
do {
current->function->arity++;
if (current->function->arity > 255) {
errorAtCurrent("Can't have more than 255 parameters.");
}
uint8_t constant = parseVariable("Expect parameter name.");
defineVariable(constant);
} while (match(TOKEN_COMMA));
}
consume(TOKEN_RIGHT_PAREN, "Expect ')' after parameters.");
consume(TOKEN_LEFT_BRACE, "Expect '{' before function body.");
block();
ObjFunction *function = endCompiler();
emitBytes(OP_CLOSURE, makeConstant(OBJ_VAL(function)));
for (int i = 0; i < function->upvalueCount; i++) {
emitByte(compiler.upvalues[i].isLocal ? 1 : 0);
emitByte(compiler.upvalues[i].index);
}
}
static void method() {
consume(TOKEN_IDENTIFIER, "Expect method name.");
uint8_t constant = identifierConstant(&parser.previous);
FunctionType type = TYPE_METHOD;
if (parser.previous.length == 4 &&
memcmp(parser.previous.start, "init", 4) == 0) {
type = TYPE_INITIALIZER;
}
function(type);
emitBytes(OP_METHOD, constant);
}
static void typeDeclaration() {
consume(TOKEN_IDENTIFIER, "Expect type name.");
Token typeName = parser.previous;
uint8_t nameConstant = identifierConstant(&parser.previous);
declareVariable();
emitBytes(OP_TYPE, nameConstant);
defineVariable(nameConstant);
TypeCompiler typeCompiler;
typeCompiler.enclosing = currentType;
currentType = &typeCompiler;
namedVariable(typeName, false);
consume(TOKEN_LEFT_BRACE, "Expect '{' before type body.");
while (!check(TOKEN_RIGHT_BRACE) && !check(TOKEN_EOF)) {
method();
}
consume(TOKEN_RIGHT_BRACE, "Expect '}' after type body.");
emitByte(OP_POP);
currentType = currentType->enclosing;
}
static void funDeclaration() {
uint8_t global = parseVariable("Expect function name.");
markInitialized();
function(TYPE_FUNCTION);
defineVariable(global);
}
static void and_(bool canAssign) {
int endJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
parsePrecedence(PREC_AND);
patchJump(endJump);
}
static void varDeclaration() {
uint8_t global = parseVariable("Expect variable name.");
if (match(TOKEN_EQUAL)) {
expression();
} else {
emitByte(OP_NIL);
}
consume(TOKEN_SEMICOLON, "Expect ';' after variable declaration.");
defineVariable(global);
}
static void expressionStatement() {
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after expression.");
emitByte(OP_POP);
}
static void forStatement() {
beginScope();
consume(TOKEN_LEFT_PAREN, "Expect '(' after 'for'.");
if (match(TOKEN_SEMICOLON)) {
// No initializer.
} else if (match(TOKEN_LET)) {
varDeclaration();
} else {
expressionStatement();
}
int loopStart = currentChunk()->count;
int exitJump = -1;
if (!match(TOKEN_SEMICOLON)) {
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after loop condition.");
// Jump out of the loop if the condition is false.
exitJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP); // Condition.
}
if (!match(TOKEN_RIGHT_PAREN)) {
int bodyJump = emitJump(OP_JUMP);
int incrementStart = currentChunk()->count;
expression();
emitByte(OP_POP);
consume(TOKEN_RIGHT_PAREN, "Expect ')' after for clauses.");
emitLoop(loopStart);
loopStart = incrementStart;
patchJump(bodyJump);
}
statement();
emitLoop(loopStart);
if (exitJump != -1) {
patchJump(exitJump);
emitByte(OP_POP); // Condition.
}
endScope();
}
static void ifStatement() {
consume(TOKEN_LEFT_PAREN, "Expect '(' after 'if'.");
expression();
consume(TOKEN_RIGHT_PAREN, "Expect ')' after condition.");
int thenJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
statement();
int elseJump = emitJump(OP_JUMP);
patchJump(thenJump);
emitByte(OP_POP);
if (match(TOKEN_ELSE))
statement();
patchJump(elseJump);
}
static void printStatement() {
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after value.");
emitByte(OP_PRINT);
}
static void returnStatement() {
if (current->type == TYPE_SCRIPT) {
error("Can't return from top-level code.");
}
if (match(TOKEN_SEMICOLON)) {
emitReturn();
} else {
if (current->type == TYPE_INITIALIZER) {
error("Can't return a value from an initializer.");
}
expression();
consume(TOKEN_SEMICOLON, "Expect ';' after return value.");
emitByte(OP_RETURN);
}
}
static void whileStatement() {
int loopStart = currentChunk()->count;
consume(TOKEN_LEFT_PAREN, "Expect '(' after 'while'.");
expression();
consume(TOKEN_RIGHT_PAREN, "Expect ')' after condition.");
int exitJump = emitJump(OP_JUMP_IF_FALSE);
emitByte(OP_POP);
statement();
emitLoop(loopStart);
patchJump(exitJump);
emitByte(OP_POP);
}
static void synchronize() {
parser.panicMode = false;
while (parser.current.type != TOKEN_EOF) {
if (parser.previous.type == TOKEN_SEMICOLON)
return;
switch (parser.current.type) {
case TOKEN_TYPE:
case TOKEN_FN:
case TOKEN_LET:
case TOKEN_FOR:
case TOKEN_IF:
case TOKEN_WHILE:
case TOKEN_PRINT:
case TOKEN_RETURN:
return;
default:; // Do nothing.
}
advance();
}
}
static void declaration() {
if (match(TOKEN_TYPE)) {
typeDeclaration();
} else if (match(TOKEN_FN)) {
funDeclaration();
} else if (match(TOKEN_LET)) {
varDeclaration();
} else {
statement();
}
if (parser.panicMode)
synchronize();
}
static void statement() {
if (match(TOKEN_PRINT)) {
printStatement();
} else if (match(TOKEN_FOR)) {
forStatement();
} else if (match(TOKEN_IF)) {
ifStatement();
} else if (match(TOKEN_RETURN)) {
returnStatement();
} else if (match(TOKEN_WHILE)) {
whileStatement();
} else if (match(TOKEN_LEFT_BRACE)) {
beginScope();
block();
endScope();
} else {
expressionStatement();
}
}
static void grouping(bool canAssign) {
expression();
consume(TOKEN_RIGHT_PAREN, "Expect ')' after expression.");
}
static void number() {
static void number(bool canAssign) {
double value = strtod(parser.previous.start, NULL);
emitConstant(NUMBER_VAL(value));
}
static void binary() {
TokenType operatorType = parser.previous.type;
ParseRule* rule = getRule(operatorType);
parsePrecedence((Precedence)(rule->precedence + 1));
static void or_(bool canAssign) {
int elseJump = emitJump(OP_JUMP_IF_FALSE);
int endJump = emitJump(OP_JUMP);
switch (operatorType) {
case TOKEN_BANG_EQUAL: emitBytes(OP_EQUAL, OP_NOT); break;
case TOKEN_EQUAL_EQUAL: emitByte(OP_EQUAL); break;
case TOKEN_GREATER: emitByte(OP_GREATER); break;
case TOKEN_GREATER_EQUAL: emitBytes(OP_LESS, OP_NOT); break;
case TOKEN_LESS: emitByte(OP_LESS); break;
case TOKEN_LESS_EQUAL: emitBytes(OP_GREATER, OP_NOT); break;
case TOKEN_PLUS: emitByte(OP_ADD); break;
case TOKEN_MINUS: emitByte(OP_SUBTRACT); break;
case TOKEN_STAR: emitByte(OP_MULTIPLY); break;
case TOKEN_SLASH: emitByte(OP_DIVIDE); break;
default: return; // Unreachable.
patchJump(elseJump);
emitByte(OP_POP);
parsePrecedence(PREC_OR);
patchJump(endJump);
}
static void string(bool canAssign) {
emitConstant(OBJ_VAL(
copyString(parser.previous.start + 1, parser.previous.length - 2)));
}
static void namedVariable(Token name, bool canAssign) {
uint8_t getOp, setOp;
int arg = resolveLocal(current, &name);
if (arg != -1) {
getOp = OP_GET_LOCAL;
setOp = OP_SET_LOCAL;
} else if ((arg = resolveUpvalue(current, &name)) != -1) {
getOp = OP_GET_UPVALUE;
setOp = OP_SET_UPVALUE;
} else {
arg = identifierConstant(&name);
getOp = OP_GET_GLOBAL;
setOp = OP_SET_GLOBAL;
}
if (canAssign && match(TOKEN_EQUAL)) {
expression();
emitBytes(setOp, (uint8_t)arg);
} else {
emitBytes(getOp, (uint8_t)arg);
}
}
static void literal() {
switch (parser.previous.type) {
case TOKEN_FALSE: emitByte(OP_FALSE); break;
case TOKEN_NIL: emitByte(OP_NIL); break;
case TOKEN_TRUE: emitByte(OP_TRUE); break;
default: return; // Unreachable.
}
static void variable(bool canAssign) {
namedVariable(parser.previous, canAssign);
}
static void unary() {
static void this_(bool canAssign) {
if (currentType == NULL) {
error("Can't use 'this' outside of a type.");
return;
}
variable(false);
}
static void unary(bool canAssign) {
TokenType operatorType = parser.previous.type;
// Compile the operand.
@ -181,59 +812,60 @@ static void unary() {
// Emit the operator instruction.
switch (operatorType) {
case TOKEN_BANG: emitByte(OP_NOT); break;
case TOKEN_MINUS: emitByte(OP_NEGATE); break;
default: return; // Unreachable.
case TOKEN_MINUS:
emitByte(OP_NEGATE);
break;
case TOKEN_BANG:
emitByte(OP_NOT);
break;
default:
return; // Unreachable.
}
}
ParseRule rules[] = {
[TOKEN_LEFT_PAREN] = {grouping, NULL, PREC_NONE},
[TOKEN_RIGHT_PAREN] = {NULL, NULL, PREC_NONE},
[TOKEN_LEFT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_RIGHT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
[TOKEN_DOT] = {NULL, NULL, PREC_NONE},
[TOKEN_MINUS] = {unary, binary, PREC_TERM},
[TOKEN_PLUS] = {NULL, binary, PREC_TERM},
[TOKEN_SEMICOLON] = {NULL, NULL, PREC_NONE},
[TOKEN_SLASH] = {NULL, binary, PREC_FACTOR},
[TOKEN_STAR] = {NULL, binary, PREC_FACTOR},
[TOKEN_BANG] = {unary, NULL, PREC_NONE},
[TOKEN_BANG_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},
[TOKEN_EQUAL_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_GREATER] = {NULL, binary, PREC_COMPARISON},
[TOKEN_GREATER_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_IDENTIFIER] = {NULL, NULL, PREC_NONE},
[TOKEN_STRING] = {NULL, NULL, PREC_NONE},
[TOKEN_NUMBER] = {number, NULL, PREC_NONE},
[TOKEN_AND] = {NULL, NULL, PREC_NONE},
[TOKEN_TYPE] = {NULL, NULL, PREC_NONE},
[TOKEN_ELSE] = {NULL, NULL, PREC_NONE},
[TOKEN_FALSE] = {literal, NULL, PREC_NONE},
[TOKEN_FOR] = {NULL, NULL, PREC_NONE},
[TOKEN_FN] = {NULL, NULL, PREC_NONE},
[TOKEN_IF] = {NULL, NULL, PREC_NONE},
[TOKEN_NIL] = {literal, NULL, PREC_NONE},
[TOKEN_OR] = {NULL, NULL, PREC_NONE},
[TOKEN_PRINT] = {NULL, NULL, PREC_NONE},
[TOKEN_RETURN] = {NULL, NULL, PREC_NONE},
[TOKEN_SUPER] = {NULL, NULL, PREC_NONE},
[TOKEN_THIS] = {NULL, NULL, PREC_NONE},
[TOKEN_TRUE] = {literal, NULL, PREC_NONE},
[TOKEN_LET] = {NULL, NULL, PREC_NONE},
[TOKEN_WHILE] = {NULL, NULL, PREC_NONE},
[TOKEN_ERROR] = {NULL, NULL, PREC_NONE},
[TOKEN_EOF] = {NULL, NULL, PREC_NONE},
[TOKEN_LEFT_PAREN] = {grouping, call, PREC_CALL},
[TOKEN_RIGHT_PAREN] = {NULL, NULL, PREC_NONE},
[TOKEN_LEFT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_RIGHT_BRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
[TOKEN_DOT] = {NULL, dot, PREC_CALL},
[TOKEN_MINUS] = {unary, binary, PREC_TERM},
[TOKEN_PLUS] = {NULL, binary, PREC_TERM},
[TOKEN_SEMICOLON] = {NULL, NULL, PREC_NONE},
[TOKEN_SLASH] = {NULL, binary, PREC_FACTOR},
[TOKEN_STAR] = {NULL, binary, PREC_FACTOR},
[TOKEN_BANG] = {unary, NULL, PREC_NONE},
[TOKEN_BANG_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},
[TOKEN_EQUAL_EQUAL] = {NULL, binary, PREC_EQUALITY},
[TOKEN_GREATER] = {NULL, binary, PREC_COMPARISON},
[TOKEN_GREATER_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS] = {NULL, binary, PREC_COMPARISON},
[TOKEN_LESS_EQUAL] = {NULL, binary, PREC_COMPARISON},
[TOKEN_IDENTIFIER] = {variable, NULL, PREC_NONE},
[TOKEN_STRING] = {string, NULL, PREC_NONE},
[TOKEN_NUMBER] = {number, NULL, PREC_NONE},
[TOKEN_AND] = {NULL, and_, PREC_AND},
[TOKEN_TYPE] = {NULL, NULL, PREC_NONE},
[TOKEN_ELSE] = {NULL, NULL, PREC_NONE},
[TOKEN_FALSE] = {literal, NULL, PREC_NONE},
[TOKEN_FOR] = {NULL, NULL, PREC_NONE},
[TOKEN_FN] = {NULL, NULL, PREC_NONE},
[TOKEN_IF] = {NULL, NULL, PREC_NONE},
[TOKEN_NIL] = {literal, NULL, PREC_NONE},
[TOKEN_OR] = {NULL, or_, PREC_OR},
[TOKEN_PRINT] = {NULL, NULL, PREC_NONE},
[TOKEN_RETURN] = {NULL, NULL, PREC_NONE},
[TOKEN_SUPER] = {NULL, NULL, PREC_NONE},
[TOKEN_THIS] = {this_, NULL, PREC_NONE},
[TOKEN_TRUE] = {literal, NULL, PREC_NONE},
[TOKEN_LET] = {NULL, NULL, PREC_NONE},
[TOKEN_WHILE] = {NULL, NULL, PREC_NONE},
[TOKEN_ERROR] = {NULL, NULL, PREC_NONE},
[TOKEN_EOF] = {NULL, NULL, PREC_NONE},
};
static ParseRule* getRule(TokenType type) {
return &rules[type];
}
static void parsePrecedence(Precedence precedence) {
advance();
ParseFn prefixRule = getRule(parser.previous.type)->prefix;
@ -242,25 +874,44 @@ static void parsePrecedence(Precedence precedence) {
return;
}
prefixRule();
bool canAssign = precedence <= PREC_ASSIGNMENT;
prefixRule(canAssign);
while (precedence <= getRule(parser.current.type)->precedence) {
advance();
ParseFn infixRule = getRule(parser.previous.type)->infix;
infixRule();
infixRule(canAssign);
}
if (canAssign && match(TOKEN_EQUAL)) {
error("Invalid assignment target.");
}
}
bool compile(const char* source, Chunk* chunk) {
newScanner(source);
compilingChunk = chunk;
static ParseRule *getRule(TokenType type) { return &rules[type]; }
ObjFunction *compile(const char *source) {
initScanner(source);
Compiler compiler;
initCompiler(&compiler, TYPE_SCRIPT);
parser.hadError = false;
parser.panicMode = false;
advance();
expression();
consume(TOKEN_EOF, "Expect end of expression.");
endCompiler();
return !parser.hadError;
while (!match(TOKEN_EOF)) {
declaration();
}
ObjFunction *function = endCompiler();
return parser.hadError ? NULL : function;
}
void markCompilerRoots() {
Compiler *compiler = current;
while (compiler != NULL) {
markObject((Obj *)compiler->function);
compiler = compiler->enclosing;
}
}

View File

@ -1,9 +1,11 @@
#ifndef ztl_compiler_h
#define ztl_compiler_h
#ifndef zlc_compiler_h
#define zlc_compiler_h
#include "vm.h"
#include "object.h"
bool compile(const char* source, Chunk* chunk);
ObjFunction* compile(const char* source);
void markCompilerRoots();
#endif

View File

@ -1,9 +1,10 @@
#include <stdio.h>
#include "debug.h"
#include "object.h"
#include "value.h"
void disassembleChunk(Chunk* chunk, const char* name) {
void disassembleChunk(Chunk *chunk, const char *name) {
printf("== %s ==\n", name);
for (int offset = 0; offset < chunk->count;) {
@ -11,8 +12,7 @@ void disassembleChunk(Chunk* chunk, const char* name) {
}
}
static int constantInstruction(const char* name, Chunk* chunk,
int offset) {
static int constantInstruction(const char *name, Chunk *chunk, int offset) {
uint8_t constant = chunk->code[offset + 1];
printf("%-16s %4d '", name, constant);
printValue(chunk->constants.values[constant]);
@ -20,15 +20,37 @@ static int constantInstruction(const char* name, Chunk* chunk,
return offset + 2;
}
static int simpleInstruction(const char* name, int offset) {
static int invokeInstruction(const char *name, Chunk *chunk, int offset) {
uint8_t constant = chunk->code[offset + 1];
uint8_t argCount = chunk->code[offset + 2];
printf("%-16s (%d args) %4d '", name, argCount, constant);
printValue(chunk->constants.values[constant]);
printf("'\n");
return offset + 3;
}
static int simpleInstruction(const char *name, int offset) {
printf("%s\n", name);
return offset + 1;
}
int disassembleInstruction(Chunk* chunk, int offset) {
static int byteInstruction(const char *name, Chunk *chunk, int offset) {
uint8_t slot = chunk->code[offset + 1];
printf("%-16s %4d\n", name, slot);
return offset + 2;
}
static int jumpInstruction(const char *name, int sign, Chunk *chunk,
int offset) {
uint16_t jump = (uint16_t)(chunk->code[offset + 1] << 8);
jump |= chunk->code[offset + 2];
printf("%-16s %4d -> %d\n", name, offset, offset + 3 + sign * jump);
return offset + 3;
}
int disassembleInstruction(Chunk *chunk, int offset) {
printf("%04d ", offset);
if (offset > 0 &&
chunk->lines[offset] == chunk->lines[offset - 1]) {
if (offset > 0 && chunk->lines[offset] == chunk->lines[offset - 1]) {
printf(" | ");
} else {
printf("%4d ", chunk->lines[offset]);
@ -36,38 +58,91 @@ int disassembleInstruction(Chunk* chunk, int offset) {
uint8_t instruction = chunk->code[offset];
switch (instruction) {
case OP_NOOP:
return simpleInstruction("OP_NOOP", offset);
case OP_NEGATE:
return simpleInstruction("OP_NEGATE", offset);
case OP_CONSTANT:
return constantInstruction("OP_CONSTANT", chunk, offset);
case OP_NIL:
return simpleInstruction("OP_NIL", offset);
case OP_TRUE:
return simpleInstruction("OP_TRUE", offset);
case OP_FALSE:
return simpleInstruction("OP_FALSE", offset);
case OP_EQUAL:
return simpleInstruction("OP_EQUAL", offset);
case OP_GREATER:
return simpleInstruction("OP_GREATER", offset);
case OP_LESS:
return simpleInstruction("OP_LESS", offset);
case OP_ADD:
return simpleInstruction("OP_ADD", offset);
case OP_SUBTRACT:
return simpleInstruction("OP_SUBTRACT", offset);
case OP_MULTIPLY:
return simpleInstruction("OP_MULTIPLY", offset);
case OP_DIVIDE:
return simpleInstruction("OP_DIVIDE", offset);
case OP_NOT:
return simpleInstruction("OP_NOT", offset);
case OP_RETURN:
return simpleInstruction("OP_RETURN", offset);
default:
printf("Unknown opcode %d\n", instruction);
return offset + 1;
case OP_CONSTANT:
return constantInstruction("OP_CONSTANT", chunk, offset);
case OP_NIL:
return simpleInstruction("OP_NIL", offset);
case OP_TRUE:
return simpleInstruction("OP_TRUE", offset);
case OP_FALSE:
return simpleInstruction("OP_FALSE", offset);
case OP_SET_GLOBAL:
return constantInstruction("OP_SET_GLOBAL", chunk, offset);
case OP_EQUAL:
return simpleInstruction("OP_EQUAL", offset);
case OP_GET_PROPERTY:
return constantInstruction("OP_GET_PROPERTY", chunk, offset);
case OP_SET_PROPERTY:
return constantInstruction("OP_SET_PROPERTY", chunk, offset);
case OP_GET_UPVALUE:
return byteInstruction("OP_GET_UPVALUE", chunk, offset);
case OP_SET_UPVALUE:
return byteInstruction("OP_SET_UPVALUE", chunk, offset);
case OP_POP:
return simpleInstruction("OP_POP", offset);
case OP_GET_LOCAL:
return byteInstruction("OP_GET_LOCAL", chunk, offset);
case OP_SET_LOCAL:
return byteInstruction("OP_SET_LOCAL", chunk, offset);
case OP_GET_GLOBAL:
return constantInstruction("OP_GET_GLOBAL", chunk, offset);
case OP_DEFINE_GLOBAL:
return constantInstruction("OP_DEFINE_GLOBAL", chunk, offset);
case OP_GREATER:
return simpleInstruction("OP_GREATER", offset);
case OP_LESS:
return simpleInstruction("OP_LESS", offset);
case OP_ADD:
return simpleInstruction("OP_ADD", offset);
case OP_SUBTRACT:
return simpleInstruction("OP_SUBTRACT", offset);
case OP_MULTIPLY:
return simpleInstruction("OP_MULTIPLY", offset);
case OP_DIVIDE:
return simpleInstruction("OP_DIVIDE", offset);
case OP_NOT:
return simpleInstruction("OP_NOT", offset);
case OP_NEGATE:
return simpleInstruction("OP_NEGATE", offset);
case OP_PRINT:
return simpleInstruction("OP_PRINT", offset);
case OP_JUMP:
return jumpInstruction("OP_JUMP", 1, chunk, offset);
case OP_JUMP_IF_FALSE:
return jumpInstruction("OP_JUMP_IF_FALSE", 1, chunk, offset);
case OP_LOOP:
return jumpInstruction("OP_LOOP", -1, chunk, offset);
case OP_CALL:
return byteInstruction("OP_CALL", chunk, offset);
case OP_INVOKE:
return invokeInstruction("OP_INVOKE", chunk, offset);
case OP_CLOSURE: {
offset++;
uint8_t constant = chunk->code[offset++];
printf("%-16s %4d ", "OP_CLOSURE", constant);
printValue(chunk->constants.values[constant]);
printf("\n");
ObjFunction *function = AS_FUNCTION(chunk->constants.values[constant]);
for (int j = 0; j < function->upvalueCount; j++) {
int isLocal = chunk->code[offset++];
int index = chunk->code[offset++];
printf("%04d | %s %d\n", offset - 2,
isLocal ? "local" : "upvalue", index);
}
return offset;
}
case OP_CLOSE_UPVALUE:
return simpleInstruction("OP_CLOSE_UPVALUE", offset);
case OP_RETURN:
return simpleInstruction("OP_RETURN", offset);
case OP_TYPE:
return constantInstruction("OP_TYPE", chunk, offset);
case OP_METHOD:
return constantInstruction("OP_METHOD", chunk, offset);
default:
printf("Unknown opcode %d\n", instruction);
return offset + 1;
}
}

View File

@ -1,5 +1,5 @@
#ifndef ztl_debug_h
#define ztl_debug_h
#ifndef zlc_debug_h
#define zlc_debug_h
#include "chunk.h"

View File

@ -7,6 +7,7 @@
#include "debug.h"
#include "vm.h"
static void repl() {
char line[1024];
for (;;) {
@ -21,8 +22,8 @@ static void repl() {
}
}
static char *readFile(const char *path) {
FILE *file = fopen(path, "rb");
static char* readFile(const char* path) {
FILE* file = fopen(path, "rb");
if (file == NULL) {
fprintf(stderr, "Could not open file \"%s\".\n", path);
exit(74);
@ -32,12 +33,11 @@ static char *readFile(const char *path) {
size_t fileSize = ftell(file);
rewind(file);
char *buffer = (char*)malloc(fileSize + 1);
char* buffer = (char*)malloc(fileSize + 1);
if (buffer == NULL) {
fprintf(stderr, "Not enough memory to read \"%s\".\n", path);
exit(74);
}
size_t bytesRead = fread(buffer, sizeof(char), fileSize, file);
if (bytesRead < fileSize) {
fprintf(stderr, "Could not read file \"%s\".\n", path);
@ -50,8 +50,8 @@ static char *readFile(const char *path) {
return buffer;
}
static void runFile(const char *path) {
char *source = readFile(path);
static void runFile(const char* path) {
char* source = readFile(path);
InterpretResult result = interpret(source);
free(source);
@ -59,15 +59,15 @@ static void runFile(const char *path) {
if (result == INTERPRET_RUNTIME_ERROR) exit(70);
}
int main(int argc, const char* *argv) {
newVM();
int main(int argc, const char* argv[]) {
initVM();
if (argc == 1) {
repl();
} else if (argc == 2) {
runFile(argv[1]);
} else {
fprintf(stderr, "Usage: clox [path]\n");
fprintf(stderr, "Usage: zlc [path]\n");
exit(64);
}

View File

@ -1,16 +1,247 @@
#include <stdlib.h>
#include "chunk.h"
#include "compiler.h"
#include "memory.h"
#include "vm.h"
#ifdef DEBUG_LOG_GC
#include "debug.h"
#include <stdio.h>
#endif
#define GC_HEAP_GROW_FACTOR 2
void *reallocate(void *pointer, size_t oldSize, size_t newSize) {
vm.bytesAllocated += newSize - oldSize;
if (newSize > oldSize) {
#ifdef DEBUG_STRESS_GC
collectGarbage();
#endif
if (vm.bytesAllocated > vm.nextGC) {
collectGarbage();
}
}
void* reallocate(void *pointer, size_t oldSize, size_t newSize) {
if (newSize == 0) {
free(pointer);
return NULL;
}
void *result = realloc(pointer, newSize);
if (result == NULL) exit(1);
if (result == NULL)
exit(1);
return result;
}
void markObject(Obj *object) {
if (object == NULL)
return;
if (object->isMarked)
return;
#ifdef DEBUG_LOG_GC
printf("%p mark ", (void *)object);
printValue(OBJ_VAL(object));
printf("\n");
#endif
object->isMarked = true;
if (vm.grayCapacity < vm.grayCount + 1) {
vm.grayCapacity = GROW_CAPACITY(vm.grayCapacity);
vm.grayStack =
(Obj **)realloc(vm.grayStack, sizeof(Obj *) * vm.grayCapacity);
if (vm.grayStack == NULL)
exit(1);
}
vm.grayStack[vm.grayCount++] = object;
}
void markValue(Value value) {
if (IS_OBJ(value))
markObject(AS_OBJ(value));
}
static void markArray(ValueArray *array) {
for (int i = 0; i < array->count; i++) {
markValue(array->values[i]);
}
}
static void blackenObject(Obj *object) {
#ifdef DEBUG_LOG_GC
printf("%p blacken ", (void *)object);
printValue(OBJ_VAL(object));
printf("\n");
#endif
switch (object->type) {
case OBJ_BOUND_METHOD: {
ObjBoundMethod *bound = (ObjBoundMethod *)object;
markValue(bound->receiver);
markObject((Obj *)bound->method);
break;
}
case OBJ_TYPE: {
TypeObj *t = (TypeObj *)object;
markObject((Obj *)t->name);
markTable(&t->methods);
break;
}
case OBJ_CLOSURE: {
ObjClosure *closure = (ObjClosure *)object;
markObject((Obj *)closure->function);
for (int i = 0; i < closure->upvalueCount; i++) {
markObject((Obj *)closure->upvalues[i]);
}
break;
}
case OBJ_FUNCTION: {
ObjFunction *function = (ObjFunction *)object;
markObject((Obj *)function->name);
markArray(&function->chunk.constants);
break;
}
case OBJ_INSTANCE: {
ObjInstance *instance = (ObjInstance *)object;
markObject((Obj *)instance->t);
markTable(&instance->fields);
break;
}
case OBJ_UPVALUE:
markValue(((ObjUpvalue *)object)->closed);
break;
case OBJ_NATIVE:
case OBJ_STRING:
break;
}
}
static void freeObject(Obj *object) {
switch (object->type) {
case OBJ_BOUND_METHOD:
FREE(ObjBoundMethod, object);
break;
case OBJ_TYPE: {
TypeObj *t = (TypeObj *)object;
freeTable(&t->methods);
FREE(TypeObj, object);
break;
}
case OBJ_CLOSURE: {
ObjClosure *closure = (ObjClosure *)object;
FREE_ARRAY(ObjUpvalue *, closure->upvalues, closure->upvalueCount);
FREE(ObjClosure, object);
break;
}
case OBJ_FUNCTION: {
ObjFunction *function = (ObjFunction *)object;
freeChunk(&function->chunk);
FREE(ObjFunction, object);
break;
}
case OBJ_INSTANCE: {
ObjInstance *instance = (ObjInstance *)object;
freeTable(&instance->fields);
FREE(ObjInstance, object);
break;
}
case OBJ_NATIVE:
FREE(ObjNative, object);
break;
case OBJ_STRING: {
ObjString *string = (ObjString *)object;
FREE_ARRAY(char, string->chars, string->length + 1);
FREE(ObjString, object);
break;
}
case OBJ_UPVALUE: {
FREE(ObjUpvalue, object);
break;
}
}
}
void freeObjects() {
Obj *object = vm.objects;
while (object != NULL) {
#ifdef DEBUG_LOG_GC
printf("%p free type %d\n", (void *)object, object->type);
#endif
Obj *next = object->next;
freeObject(object);
object = next;
}
free(vm.grayStack);
}
static void markRoots() {
for (Value *slot = vm.stack; slot < vm.stackTop; slot++) {
markValue(*slot);
}
for (int i = 0; i < vm.frameCount; i++) {
markObject((Obj *)vm.frames[i].closure);
}
for (ObjUpvalue *upvalue = vm.openUpvalues; upvalue != NULL;
upvalue = upvalue->next) {
markObject((Obj *)upvalue);
}
markTable(&vm.globals);
markCompilerRoots();
markObject((Obj *)vm.initString);
}
static void traceReferences() {
while (vm.grayCount > 0) {
Obj *object = vm.grayStack[--vm.grayCount];
blackenObject(object);
}
}
static void sweep() {
Obj *previous = NULL;
Obj *object = vm.objects;
while (object != NULL) {
if (object->isMarked) {
object->isMarked = false;
previous = object;
object = object->next;
} else {
Obj *unreached = object;
object = object->next;
if (previous != NULL) {
previous->next = object;
} else {
vm.objects = object;
}
freeObject(unreached);
}
}
}
void collectGarbage() {
#ifdef DEBUG_LOG_GC
printf("-- gc begin\n");
size_t before = vm.bytesAllocated;
#endif
markRoots();
traceReferences();
tableRemoveWhite(&vm.strings);
sweep();
vm.nextGC = vm.bytesAllocated * GC_HEAP_GROW_FACTOR;
#ifdef DEBUG_LOG_GC
printf("-- gc end\n");
printf(" collected %zu bytes (from %zu to %zu) next at %zu\n",
before - vm.bytesAllocated, before, vm.bytesAllocated, vm.nextGC);
#endif
}

View File

@ -1,12 +1,17 @@
#ifndef ztl_memory_h
#define ztl_memory_h
#ifndef zlc_memory_h
#define zlc_memory_h
#include "common.h"
#include "object.h"
#define ALLOCATE(type, count) \
(type*)reallocate(NULL, 0, sizeof(type) * (count))
#define FREE(type, pointer) reallocate(pointer, sizeof(type), 0)
#define GROW_CAPACITY(capacity) \
((capacity) < 8 ? 8 : (capacity) * 2)
#define GROW_ARRAY(type, pointer, oldCount, newCount) \
(type*)reallocate(pointer, sizeof(type) * (oldCount), \
sizeof(type) * (newCount))
@ -15,7 +20,9 @@
reallocate(pointer, sizeof(type) * (oldCount), 0)
void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void markObject(Obj* object);
void markValue(Value value);
void collectGarbage();
void freeObjects();
#endif

163
src/object.c Normal file
View File

@ -0,0 +1,163 @@
#include <stdio.h>
#include <string.h>
#include "memory.h"
#include "object.h"
#include "table.h"
#include "value.h"
#include "vm.h"
#define ALLOCATE_OBJ(type, objectType) \
(type *)allocateObject(sizeof(type), objectType)
static Obj *allocateObject(size_t size, ObjType type) {
Obj *object = (Obj *)reallocate(NULL, 0, size);
object->type = type;
object->isMarked = false;
object->next = vm.objects;
vm.objects = object;
#ifdef DEBUG_LOG_GC
printf("%p allocate %zu for %d\n", (void *)object, size, type);
#endif
return object;
}
ObjBoundMethod *newBoundMethod(Value receiver, ObjClosure *method) {
ObjBoundMethod *bound = ALLOCATE_OBJ(ObjBoundMethod, OBJ_BOUND_METHOD);
bound->receiver = receiver;
bound->method = method;
return bound;
}
TypeObj *newType(ObjString *name) {
TypeObj *t = ALLOCATE_OBJ(TypeObj, OBJ_TYPE);
t->name = name;
initTable(&t->methods);
return t;
}
ObjClosure *newClosure(ObjFunction *function) {
ObjUpvalue **upvalues = ALLOCATE(ObjUpvalue *, function->upvalueCount);
for (int i = 0; i < function->upvalueCount; i++) {
upvalues[i] = NULL;
}
ObjClosure *closure = ALLOCATE_OBJ(ObjClosure, OBJ_CLOSURE);
closure->function = function;
closure->upvalues = upvalues;
closure->upvalueCount = function->upvalueCount;
return closure;
}
ObjFunction *newFunction() {
ObjFunction *function = ALLOCATE_OBJ(ObjFunction, OBJ_FUNCTION);
function->arity = 0;
function->upvalueCount = 0;
function->name = NULL;
initChunk(&function->chunk);
return function;
}
ObjInstance *newInstance(TypeObj *t) {
ObjInstance *instance = ALLOCATE_OBJ(ObjInstance, OBJ_INSTANCE);
instance->t = t;
initTable(&instance->fields);
return instance;
}
ObjNative *newNative(NativeFn function) {
ObjNative *native = ALLOCATE_OBJ(ObjNative, OBJ_NATIVE);
native->function = function;
return native;
}
static ObjString *allocateString(char *chars, int length, uint32_t hash) {
ObjString *string = ALLOCATE_OBJ(ObjString, OBJ_STRING);
string->length = length;
string->chars = chars;
string->hash = hash;
push(OBJ_VAL(string));
tableSet(&vm.strings, string, NIL_VAL);
pop();
return string;
}
static uint32_t hashString(const char *key, int length) {
uint32_t hash = 2166136261u;
for (int i = 0; i < length; i++) {
hash ^= (uint8_t)key[i];
hash *= 16777619;
}
return hash;
}
ObjString *takeString(char *chars, int length) {
uint32_t hash = hashString(chars, length);
ObjString *interned = tableFindString(&vm.strings, chars, length, hash);
if (interned != NULL) {
FREE_ARRAY(char, chars, length + 1);
return interned;
}
return allocateString(chars, length, hash);
}
ObjString *copyString(const char *chars, int length) {
uint32_t hash = hashString(chars, length);
ObjString *interned = tableFindString(&vm.strings, chars, length, hash);
if (interned != NULL)
return interned;
char *heapChars = ALLOCATE(char, length + 1);
memcpy(heapChars, chars, length);
heapChars[length] = '\0';
return allocateString(heapChars, length, hash);
}
ObjUpvalue *newUpvalue(Value *slot) {
ObjUpvalue *upvalue = ALLOCATE_OBJ(ObjUpvalue, OBJ_UPVALUE);
upvalue->closed = NIL_VAL;
upvalue->location = slot;
upvalue->next = NULL;
return upvalue;
}
static void printFunction(ObjFunction *function) {
if (function->name == NULL) {
printf("<script>");
return;
}
printf("<fn %s>", function->name->chars);
}
void printObject(Value value) {
switch (OBJ_TYPE(value)) {
case OBJ_BOUND_METHOD:
printFunction(AS_BOUND_METHOD(value)->method->function);
break;
case OBJ_TYPE:
printf("%s", AS_TYPE(value)->name->chars);
break;
case OBJ_CLOSURE:
printFunction(AS_CLOSURE(value)->function);
break;
case OBJ_FUNCTION:
printFunction(AS_FUNCTION(value));
break;
case OBJ_INSTANCE:
printf("%s instance", AS_INSTANCE(value)->t->name->chars);
break;
case OBJ_NATIVE:
printf("<native fn>");
break;
case OBJ_STRING:
printf("%s", AS_CSTRING(value));
break;
case OBJ_UPVALUE:
printf("upvalue");
break;
}
}

114
src/object.h Normal file
View File

@ -0,0 +1,114 @@
#ifndef zlc_object_h
#define zlc_object_h
#include "chunk.h"
#include "common.h"
#include "table.h"
#include "value.h"
#define OBJ_TYPE(value) (AS_OBJ(value)->type)
#define IS_BOUND_METHOD(value) isObjType(value, OBJ_BOUND_METHOD)
#define IS_TYPE(value) isObjType(value, OBJ_TYPE)
#define IS_CLOSURE(value) isObjType(value, OBJ_CLOSURE)
#define IS_FUNCTION(value) isObjType(value, OBJ_FUNCTION)
#define IS_INSTANCE(value) isObjType(value, OBJ_INSTANCE)
#define IS_NATIVE(value) isObjType(value, OBJ_NATIVE)
#define IS_STRING(value) isObjType(value, OBJ_STRING)
#define AS_BOUND_METHOD(value) ((ObjBoundMethod *)AS_OBJ(value))
#define AS_TYPE(value) ((TypeObj *)AS_OBJ(value))
#define AS_CLOSURE(value) ((ObjClosure *)AS_OBJ(value))
#define AS_FUNCTION(value) ((ObjFunction *)AS_OBJ(value))
#define AS_INSTANCE(value) ((ObjInstance *)AS_OBJ(value))
#define AS_NATIVE(value) (((ObjNative *)AS_OBJ(value))->function)
#define AS_STRING(value) ((ObjString *)AS_OBJ(value))
#define AS_CSTRING(value) (((ObjString *)AS_OBJ(value))->chars)
typedef enum {
OBJ_BOUND_METHOD,
OBJ_TYPE,
OBJ_CLOSURE,
OBJ_FUNCTION,
OBJ_INSTANCE,
OBJ_NATIVE,
OBJ_STRING,
OBJ_UPVALUE
} ObjType;
struct Obj {
ObjType type;
bool isMarked;
struct Obj *next;
};
typedef struct {
Obj obj;
int arity;
int upvalueCount;
Chunk chunk;
ObjString *name;
} ObjFunction;
typedef Value (*NativeFn)(int argCount, Value *args);
typedef struct {
Obj obj;
NativeFn function;
} ObjNative;
struct ObjString {
Obj obj;
int length;
char *chars;
uint32_t hash;
};
typedef struct ObjUpvalue {
Obj obj;
Value *location;
Value closed;
struct ObjUpvalue *next;
} ObjUpvalue;
typedef struct {
Obj obj;
ObjFunction *function;
ObjUpvalue **upvalues;
int upvalueCount;
} ObjClosure;
typedef struct {
Obj obj;
ObjString *name;
Table methods;
} TypeObj;
typedef struct {
Obj obj;
TypeObj *t;
Table fields;
} ObjInstance;
typedef struct {
Obj obj;
Value receiver;
ObjClosure *method;
} ObjBoundMethod;
ObjBoundMethod *newBoundMethod(Value receiver, ObjClosure *method);
TypeObj *newType(ObjString *name);
ObjClosure *newClosure(ObjFunction *function);
ObjFunction *newFunction();
ObjInstance *newInstance(TypeObj *t);
ObjNative *newNative(NativeFn function);
ObjString *takeString(char *chars, int length);
ObjString *copyString(const char *chars, int length);
ObjUpvalue *newUpvalue(Value *slot);
void printObject(Value value);
static inline bool isObjType(Value value, ObjType type) {
return IS_OBJ(value) && AS_OBJ(value)->type == type;
}
#endif

View File

@ -12,13 +12,43 @@ typedef struct {
Scanner scanner;
void newScanner(const char* source) {
void initScanner(const char *source) {
scanner.start = source;
scanner.current = source;
scanner.line = 1;
}
static Token newToken(TokenType type) {
static bool isAlpha(char c) {
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_';
}
static bool isDigit(char c) { return c >= '0' && c <= '9'; }
static bool isAtEnd() { return *scanner.current == '\0'; }
static char advance() {
scanner.current++;
return scanner.current[-1];
}
static char peek() { return *scanner.current; }
static char peekNext() {
if (isAtEnd())
return '\0';
return scanner.current[1];
}
static bool match(char expected) {
if (isAtEnd())
return false;
if (*scanner.current != expected)
return false;
scanner.current++;
return true;
}
static Token makeToken(TokenType type) {
Token token;
token.type = type;
token.start = scanner.start;
@ -27,7 +57,7 @@ static Token newToken(TokenType type) {
return token;
}
static Token errorToken(const char* message) {
static Token errorToken(const char *message) {
Token token;
token.type = TOKEN_ERROR;
token.start = message;
@ -36,95 +66,34 @@ static Token errorToken(const char* message) {
return token;
}
static bool isAtEnd() {
return *scanner.current == '\0';
}
static char peek() {
return *scanner.current;
}
static char peekNext() {
if (isAtEnd()) return '\0';
return scanner.current[1];
}
static char advance() {
scanner.current++;
return scanner.current[-1];
}
static bool match(char expected) {
if (isAtEnd()) return false;
if (*scanner.current != expected) return false;
scanner.current++;
return true;
}
static void skipWhitespace() {
for (;;) {
char c = peek();
switch (c) {
case ' ':
case '\r':
case '\t':
advance();
break;
case '\n':
scanner.line++;
advance();
break;
case '/':
if (peekNext() == '/') {
// A comment goes until the end of the line.
while (peek() != '\n' && !isAtEnd()) advance();
} else {
return;
}
break;
default:
case ' ':
case '\r':
case '\t':
advance();
break;
case '\n':
scanner.line++;
advance();
break;
case '/':
if (peekNext() == '/') {
// A comment goes until the end of the line.
while (peek() != '\n' && !isAtEnd())
advance();
} else {
return;
}
break;
default:
return;
}
}
}
static bool isDigit(char c) {
return c >= '0' && c <= '9';
}
static bool isAlpha(char c) {
return (c >= 'a' && c <= 'z') ||
(c >= 'A' && c <= 'Z') ||
c == '_';
}
static Token number() {
while (isDigit(peek())) advance();
// Look for a fractional part.
if (peek() == '.' && isDigit(peekNext())) {
// Consume the ".".
advance();
while (isDigit(peek())) advance();
}
return newToken(TOKEN_NUMBER);
}
static Token string() {
while (peek() != '"' && !isAtEnd()) {
if (peek() == '\n') scanner.line++;
advance();
}
if (isAtEnd()) return errorToken("Unterminated string.");
// The closing quote.
advance();
return newToken(TOKEN_STRING);
}
static TokenType checkKeyword(int start, int length, const char *rest,
TokenType type) {
if (scanner.current - scanner.start == start + length &&
@ -139,6 +108,8 @@ static TokenType identifierType() {
switch (scanner.start[0]) {
case 'a':
return checkKeyword(1, 2, "nd", TOKEN_AND);
case 'b':
return checkKeyword(1, 4, "reak", TOKEN_BREAK);
case 'e':
return checkKeyword(1, 3, "lse", TOKEN_ELSE);
case 'f':
@ -181,60 +152,110 @@ static TokenType identifierType() {
case 'w':
return checkKeyword(1, 4, "hile", TOKEN_WHILE);
}
return TOKEN_IDENTIFIER;
}
static Token identifier() {
while (isAlpha(peek()) || isDigit(peek())) advance();
return newToken(identifierType());
while (isAlpha(peek()) || isDigit(peek()))
advance();
return makeToken(identifierType());
}
static Token number() {
while (isDigit(peek()))
advance();
// Look for a fractional part.
if (peek() == '.' && isDigit(peekNext())) {
// Consume the ".".
advance();
while (isDigit(peek()))
advance();
}
return makeToken(TOKEN_NUMBER);
}
static Token string() {
while (peek() != '"' && !isAtEnd()) {
if (peek() == '\n')
scanner.line++;
advance();
}
if (isAtEnd())
return errorToken("Unterminated string.");
// The closing quote.
advance();
return makeToken(TOKEN_STRING);
}
Token scanToken() {
skipWhitespace();
scanner.start = scanner.current;
if (isAtEnd()) return newToken(TOKEN_EOF);
if (isAtEnd())
return makeToken(TOKEN_EOF);
char c = advance();
if (isAlpha(c)) return identifier();
if (isDigit(c)) return number();
if (isAlpha(c))
return identifier();
if (isDigit(c))
return number();
switch (c) {
case '(': return newToken(TOKEN_LEFT_PAREN);
case ')': return newToken(TOKEN_RIGHT_PAREN);
case '{': return newToken(TOKEN_LEFT_BRACE);
case '}': return newToken(TOKEN_RIGHT_BRACE);
case '[': return newToken(TOKEN_LEFT_BRACKET);
case ']': return newToken(TOKEN_RIGHT_BRACKET);
case ';': return newToken(TOKEN_SEMICOLON);
case ':': return newToken(TOKEN_COLON);
case '#': return newToken(TOKEN_MESH);
case '$': return newToken(TOKEN_DOLLAR);
case '%': return newToken(TOKEN_PERCENT);
case '&': return newToken(TOKEN_AMPERSAND);
case '@': return newToken(TOKEN_AT);
case ',': return newToken(TOKEN_COMMA);
case '.': return newToken(TOKEN_DOT);
case '-': return newToken(TOKEN_MINUS);
case '+': return newToken(TOKEN_PLUS);
case '/': return newToken(TOKEN_SLASH);
case '*': return newToken(TOKEN_STAR);
case '!':
return newToken(
match('=') ? TOKEN_BANG_EQUAL : TOKEN_BANG);
case '=':
return newToken(
match('=') ? TOKEN_EQUAL_EQUAL : TOKEN_EQUAL);
case '<':
return newToken(
match('=') ? TOKEN_LESS_EQUAL : TOKEN_LESS);
case '>':
return newToken(
match('=') ? TOKEN_GREATER_EQUAL : TOKEN_GREATER);
case '"': return string();
case '(':
return makeToken(TOKEN_LEFT_PAREN);
case ')':
return makeToken(TOKEN_RIGHT_PAREN);
case '{':
return makeToken(TOKEN_LEFT_BRACE);
case '}':
return makeToken(TOKEN_RIGHT_BRACE);
case '[':
return makeToken(TOKEN_LEFT_BRACKET);
case ']':
return makeToken(TOKEN_RIGHT_BRACKET);
case ';':
return makeToken(TOKEN_SEMICOLON);
case ':':
return makeToken(TOKEN_COLON);
case '#':
return makeToken(TOKEN_MESH);
case '$':
return makeToken(TOKEN_DOLLAR);
case '%':
return makeToken(TOKEN_PERCENT);
case '&':
return makeToken(TOKEN_AMPERSAND);
case '@':
return makeToken(TOKEN_AT);
case ',':
return makeToken(TOKEN_COMMA);
case '.':
return makeToken(TOKEN_DOT);
case '-':
return makeToken(TOKEN_MINUS);
case '+':
return makeToken(TOKEN_PLUS);
case '/':
return makeToken(TOKEN_SLASH);
case '*':
return makeToken(TOKEN_STAR);
case '!':
return makeToken(match('=') ? TOKEN_BANG_EQUAL : TOKEN_BANG);
case '=':
return makeToken(match('=') ? TOKEN_EQUAL_EQUAL : TOKEN_EQUAL);
case '<':
return makeToken(match('=') ? TOKEN_LESS_EQUAL : TOKEN_LESS);
case '>':
return makeToken(match('=') ? TOKEN_GREATER_EQUAL : TOKEN_GREATER);
case '"':
return string();
}
return errorToken("Unexpected character.");
}

View File

@ -1,5 +1,5 @@
#ifndef ztl_scanner_h
#define ztl_scanner_h
#ifndef zlc_scanner_h
#define zlc_scanner_h
typedef enum {
// End of file
@ -54,6 +54,7 @@ typedef enum {
TOKEN_TRUE,
TOKEN_LET,
TOKEN_WHILE,
TOKEN_BREAK,
TOKEN_ERROR,
} TokenType;
@ -64,7 +65,7 @@ typedef struct {
int line;
} Token;
void newScanner(const char *source);
void initScanner(const char *source);
Token scanToken();
#endif

151
src/table.c Normal file
View File

@ -0,0 +1,151 @@
#include <stdlib.h>
#include <string.h>
#include "memory.h"
#include "object.h"
#include "table.h"
#include "value.h"
#define TABLE_MAX_LOAD 0.75
void initTable(Table* table) {
table->count = 0;
table->capacity = 0;
table->entries = NULL;
}
void freeTable(Table* table) {
FREE_ARRAY(Entry, table->entries, table->capacity);
initTable(table);
}
static Entry* findEntry(Entry* entries, int capacity,
ObjString* key) {
uint32_t index = key->hash % capacity;
Entry* tombstone = NULL;
for (;;) {
Entry* entry = &entries[index];
if (entry->key == NULL) {
if (IS_NIL(entry->value)) {
// Empty entry.
return tombstone != NULL ? tombstone : entry;
} else {
// We found a tombstone.
if (tombstone == NULL) tombstone = entry;
}
} else if (entry->key == key) {
// We found the key.
return entry;
}
index = (index + 1) % capacity;
}
}
bool tableGet(Table* table, ObjString* key, Value* value) {
if (table->count == 0) return false;
Entry* entry = findEntry(table->entries, table->capacity, key);
if (entry->key == NULL) return false;
*value = entry->value;
return true;
}
static void adjustCapacity(Table* table, int capacity) {
Entry* entries = ALLOCATE(Entry, capacity);
for (int i = 0; i < capacity; i++) {
entries[i].key = NULL;
entries[i].value = NIL_VAL;
}
table->count = 0;
for (int i = 0; i < table->capacity; i++) {
Entry* entry = &table->entries[i];
if (entry->key == NULL) continue;
Entry* dest = findEntry(entries, capacity, entry->key);
dest->key = entry->key;
dest->value = entry->value;
table->count++;
}
FREE_ARRAY(Entry, table->entries, table->capacity);
table->entries = entries;
table->capacity = capacity;
}
bool tableSet(Table* table, ObjString* key, Value value) {
if (table->count + 1 > table->capacity * TABLE_MAX_LOAD) {
int capacity = GROW_CAPACITY(table->capacity);
adjustCapacity(table, capacity);
}
Entry* entry = findEntry(table->entries, table->capacity, key);
bool isNewKey = entry->key == NULL;
if (isNewKey && IS_NIL(entry->value)) table->count++;
entry->key = key;
entry->value = value;
return isNewKey;
}
bool tableDelete(Table* table, ObjString* key) {
if (table->count == 0) return false;
// Find the entry.
Entry* entry = findEntry(table->entries, table->capacity, key);
if (entry->key == NULL) return false;
// Place a tombstone in the entry.
entry->key = NULL;
entry->value = BOOL_VAL(true);
return true;
}
void tableAddAll(Table* from, Table* to) {
for (int i = 0; i < from->capacity; i++) {
Entry* entry = &from->entries[i];
if (entry->key != NULL) {
tableSet(to, entry->key, entry->value);
}
}
}
ObjString* tableFindString(Table* table, const char* chars,
int length, uint32_t hash) {
if (table->count == 0) return NULL;
uint32_t index = hash % table->capacity;
for (;;) {
Entry* entry = &table->entries[index];
if (entry->key == NULL) {
// Stop if we find an empty non-tombstone entry.
if (IS_NIL(entry->value)) return NULL;
} else if (entry->key->length == length &&
entry->key->hash == hash &&
memcmp(entry->key->chars, chars, length) == 0) {
// We found it.
return entry->key;
}
index = (index + 1) % table->capacity;
}
}
void tableRemoveWhite(Table* table) {
for (int i = 0; i < table->capacity; i++) {
Entry* entry = &table->entries[i];
if (entry->key != NULL && !entry->key->obj.isMarked) {
tableDelete(table, entry->key);
}
}
}
void markTable(Table* table) {
for (int i = 0; i < table->capacity; i++) {
Entry* entry = &table->entries[i];
markObject((Obj*)entry->key);
markValue(entry->value);
}
}

29
src/table.h Normal file
View File

@ -0,0 +1,29 @@
#ifndef zlc_table_h
#define zlc_table_h
#include "common.h"
#include "value.h"
typedef struct {
ObjString* key;
Value value;
} Entry;
typedef struct {
int count;
int capacity;
Entry* entries;
} Table;
void initTable(Table* table);
void freeTable(Table* table);
bool tableGet(Table* table, ObjString* key, Value* value);
bool tableSet(Table* table, ObjString* key, Value value);
bool tableDelete(Table* table, ObjString* key);
void tableAddAll(Table* from, Table* to);
ObjString* tableFindString(Table* table, const char* chars,
int length, uint32_t hash);
void tableRemoveWhite(Table* table);
void markTable(Table* table);
#endif

View File

@ -1,15 +1,17 @@
#include <stdio.h>
#include <string.h>
#include "object.h"
#include "memory.h"
#include "value.h"
void newValueArray(ValueArray *array) {
void initValueArray(ValueArray* array) {
array->values = NULL;
array->capacity = 0;
array->count = 0;
}
void writeValueArray(ValueArray *array, Value value) {
void writeValueArray(ValueArray* array, Value value) {
if (array->capacity < array->count + 1) {
int oldCapacity = array->capacity;
array->capacity = GROW_CAPACITY(oldCapacity);
@ -21,9 +23,9 @@ void writeValueArray(ValueArray *array, Value value) {
array->count++;
}
void freeValueArray(ValueArray *array) {
void freeValueArray(ValueArray* array) {
FREE_ARRAY(Value, array->values, array->capacity);
newValueArray(array);
initValueArray(array);
}
void printValue(Value value) {
@ -33,6 +35,7 @@ void printValue(Value value) {
break;
case VAL_NIL: printf("nil"); break;
case VAL_NUMBER: printf("%g", AS_NUMBER(value)); break;
case VAL_OBJ: printObject(value); break;
}
}
@ -42,6 +45,7 @@ bool valuesEqual(Value a, Value b) {
case VAL_BOOL: return AS_BOOL(a) == AS_BOOL(b);
case VAL_NIL: return true;
case VAL_NUMBER: return AS_NUMBER(a) == AS_NUMBER(b);
case VAL_OBJ: return AS_OBJ(a) == AS_OBJ(b);
default: return false; // Unreachable.
}
}

View File

@ -1,12 +1,16 @@
#ifndef ztl_value_h
#define ztl_value_h
#ifndef zlc_value_h
#define zlc_value_h
#include "common.h"
typedef struct Obj Obj;
typedef struct ObjString ObjString;
typedef enum {
VAL_BOOL,
VAL_NIL,
VAL_NUMBER,
VAL_OBJ,
} ValueType;
typedef struct {
@ -14,30 +18,35 @@ typedef struct {
union {
bool boolean;
double number;
Obj* obj;
} as;
} Value;
#define BOOL_VAL(value) ((Value){VAL_BOOL,{.boolean = value}})
#define IS_BOOL(value) ((value).type == VAL_BOOL)
#define IS_NIL(value) ((value).type == VAL_NIL)
#define IS_NUMBER(value) ((value).type == VAL_NUMBER)
#define IS_OBJ(value) ((value).type == VAL_OBJ)
#define AS_BOOL(value) ((value).as.boolean)
#define AS_NUMBER(value) ((value).as.number)
#define AS_OBJ(value) ((value).as.obj)
#define BOOL_VAL(value) ((Value){VAL_BOOL, {.boolean = value}})
#define NIL_VAL ((Value){VAL_NIL, {.number = 0}})
#define NUMBER_VAL(value) ((Value){VAL_NUMBER, {.number = value}})
#define AS_BOOL(value) ((value).as.boolean)
#define AS_NUMBER(value) ((value).as.number)
#define IS_BOOL(value) ((value).type == VAL_BOOL)
#define IS_NIL(value) ((value).type == VAL_NIL)
#define IS_NUMBER(value) ((value).type == VAL_NUMBER)
#define NUMBER_VAL(value) ((Value){VAL_NUMBER, {.number = value}})
#define OBJ_VAL(object) ((Value){VAL_OBJ, {.obj = (Obj*)object}})
typedef struct {
int capacity;
int count;
Value *values;
Value* values;
} ValueArray;
bool valuesEqual(Value a, Value b);
void newValueArray(ValueArray *array);
void writeValueArray(ValueArray *array, Value value);
void freeValueArray(ValueArray *array);
void initValueArray(ValueArray* array);
void writeValueArray(ValueArray* array, Value value);
void freeValueArray(ValueArray* array);
void printValue(Value value);
#endif

522
src/vm.c
View File

@ -1,36 +1,54 @@
#include "vm.h"
#include "common.h"
#include "compiler.h"
#include "debug.h"
#include "vm.h"
#include "memory.h"
#include "object.h"
#include <stdio.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
VM vm;
VM vm;
static Value clockNative(int argCount, Value *args) {
return NUMBER_VAL((double)clock() / CLOCKS_PER_SEC);
}
static void resetStack() {
vm.stackTop = vm.stack;
vm.frameCount = 0;
vm.openUpvalues = NULL;
}
static void runtimeError(const char* format, ...) {
static void runtimeError(const char *format, ...) {
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
fputs("\n", stderr);
size_t instruction = vm.ip - vm.chunk->code - 1;
int line = vm.chunk->lines[instruction];
fprintf(stderr, "[line %d] in script\n", line);
for (int i = vm.frameCount - 1; i >= 0; i--) {
CallFrame *frame = &vm.frames[i];
ObjFunction *function = frame->closure->function;
size_t instruction = frame->ip - function->chunk.code - 1;
fprintf(stderr, "[line %d] in ", function->chunk.lines[instruction]);
if (function->name == NULL) {
fprintf(stderr, "script\n");
} else {
fprintf(stderr, "%s()\n", function->name->chars);
}
}
resetStack();
}
void newVM() {
resetStack();
}
void freeVM() {
static void defineNative(const char *name, NativeFn function) {
push(OBJ_VAL(copyString(name, (int)strlen(name))));
push(OBJ_VAL(newNative(function)));
tableSet(&vm.globals, AS_STRING(vm.stack[0]), vm.stack[1]);
pop();
pop();
}
void push(Value value) {
@ -43,102 +61,456 @@ Value pop() {
return *vm.stackTop;
}
static Value peek(int distance) {
return vm.stackTop[-1 - distance];
static Value peek(int distance) { return vm.stackTop[-1 - distance]; }
static bool call(ObjClosure *closure, int argCount) {
if (argCount != closure->function->arity) {
runtimeError("Expected %d arguments but got %d.", closure->function->arity,
argCount);
return false;
}
if (vm.frameCount == FRAMES_MAX) {
runtimeError("Stack overflow.");
return false;
}
CallFrame *frame = &vm.frames[vm.frameCount++];
frame->closure = closure;
frame->ip = closure->function->chunk.code;
frame->slots = vm.stackTop - argCount - 1;
return true;
}
static bool callValue(Value callee, int argCount) {
if (IS_OBJ(callee)) {
switch (OBJ_TYPE(callee)) {
case OBJ_BOUND_METHOD: {
ObjBoundMethod *bound = AS_BOUND_METHOD(callee);
vm.stackTop[-argCount - 1] = bound->receiver;
return call(bound->method, argCount);
}
case OBJ_TYPE: {
TypeObj *t = AS_TYPE(callee);
vm.stackTop[-argCount - 1] = OBJ_VAL(newInstance(t));
Value initializer;
if (tableGet(&t->methods, vm.initString, &initializer)) {
return call(AS_CLOSURE(initializer), argCount);
} else if (argCount != 0) {
runtimeError("Expected 0 arguments but got %d.", argCount);
return false;
}
return true;
}
case OBJ_CLOSURE:
return call(AS_CLOSURE(callee), argCount);
case OBJ_NATIVE: {
NativeFn native = AS_NATIVE(callee);
Value result = native(argCount, vm.stackTop - argCount);
vm.stackTop -= argCount + 1;
push(result);
return true;
}
default:
break; // Non-callable object type.
}
}
runtimeError("Can only call functions and typees.");
return false;
}
static bool invokeFromType(TypeObj *t, ObjString *name, int argCount) {
Value method;
if (!tableGet(&t->methods, name, &method)) {
runtimeError("Undefined property '%s'.", name->chars);
return false;
}
return call(AS_CLOSURE(method), argCount);
}
static bool invoke(ObjString *name, int argCount) {
Value receiver = peek(argCount);
if (!IS_INSTANCE(receiver)) {
runtimeError("Only instances have methods.");
return false;
}
ObjInstance *instance = AS_INSTANCE(receiver);
Value value;
if (tableGet(&instance->fields, name, &value)) {
vm.stackTop[-argCount - 1] = value;
return callValue(value, argCount);
}
return invokeFromType(instance->t, name, argCount);
}
static bool bindMethod(TypeObj *t, ObjString *name) {
Value method;
if (!tableGet(&t->methods, name, &method)) {
runtimeError("Undefined property '%s'.", name->chars);
return false;
}
ObjBoundMethod *bound = newBoundMethod(peek(0), AS_CLOSURE(method));
pop();
push(OBJ_VAL(bound));
return true;
}
static ObjUpvalue *captureUpvalue(Value *local) {
ObjUpvalue *prevUpvalue = NULL;
ObjUpvalue *upvalue = vm.openUpvalues;
while (upvalue != NULL && upvalue->location > local) {
prevUpvalue = upvalue;
upvalue = upvalue->next;
}
if (upvalue != NULL && upvalue->location == local) {
return upvalue;
}
ObjUpvalue *createdUpvalue = newUpvalue(local);
createdUpvalue->next = upvalue;
if (prevUpvalue == NULL) {
vm.openUpvalues = createdUpvalue;
} else {
prevUpvalue->next = createdUpvalue;
}
return createdUpvalue;
}
static void closeUpvalues(Value *last) {
while (vm.openUpvalues != NULL && vm.openUpvalues->location >= last) {
ObjUpvalue *upvalue = vm.openUpvalues;
upvalue->closed = *upvalue->location;
upvalue->location = &upvalue->closed;
vm.openUpvalues = upvalue->next;
}
}
static void defineMethod(ObjString *name) {
Value method = peek(0);
TypeObj *t = AS_TYPE(peek(1));
tableSet(&t->methods, name, method);
pop();
}
static bool isFalsey(Value value) {
return IS_NIL(value) || (IS_BOOL(value) && !AS_BOOL(value));
}
static void concatenate() {
ObjString *b = AS_STRING(peek(0));
ObjString *a = AS_STRING(peek(1));
int length = a->length + b->length;
char *chars = ALLOCATE(char, length + 1);
memcpy(chars, a->chars, a->length);
memcpy(chars + a->length, b->chars, b->length);
chars[length] = '\0';
ObjString *result = takeString(chars, length);
pop();
pop();
push(OBJ_VAL(result));
}
void initVM() {
resetStack();
vm.objects = NULL;
vm.bytesAllocated = 0;
vm.nextGC = 1024 * 1024;
vm.grayCount = 0;
vm.grayCapacity = 0;
vm.grayStack = NULL;
initTable(&vm.globals);
initTable(&vm.strings);
vm.initString = NULL;
vm.initString = copyString("init", 4);
defineNative("clock", clockNative);
}
void freeVM() {
freeTable(&vm.globals);
freeTable(&vm.strings);
vm.initString = NULL;
freeObjects();
}
static InterpretResult run() {
#define READ_BYTE() (*vm.ip++)
#define READ_CONSTANT() (vm.chunk->constants.values[READ_BYTE()])
#define BINARY_OP(valueType, op) \
do { \
if (!IS_NUMBER(peek(0)) || !IS_NUMBER(peek(1))) { \
runtimeError("Operands must be numbers."); \
return INTERPRET_RUNTIME_ERROR; \
} \
double b = AS_NUMBER(pop()); \
double a = AS_NUMBER(pop()); \
push(valueType(a op b)); \
} while (false)
CallFrame *frame = &vm.frames[vm.frameCount - 1];
#define READ_BYTE() (*frame->ip++)
#define READ_SHORT() \
(frame->ip += 2, (uint16_t)((frame->ip[-2] << 8) | frame->ip[-1]))
#define READ_CONSTANT() \
(frame->closure->function->chunk.constants.values[READ_BYTE()])
#define READ_STRING() AS_STRING(READ_CONSTANT())
#define BINARY_OP(valueType, op) \
do { \
if (!IS_NUMBER(peek(0)) || !IS_NUMBER(peek(1))) { \
runtimeError("Operands must be numbers."); \
return INTERPRET_RUNTIME_ERROR; \
} \
double b = AS_NUMBER(pop()); \
double a = AS_NUMBER(pop()); \
push(valueType(a op b)); \
} while (false)
for (;;) {
#ifdef DEBUG_TRACE_EXECUTION
printf(" ");
for (Value* slot = vm.stack; slot < vm.stackTop; slot++) {
for (Value *slot = vm.stack; slot < vm.stackTop; slot++) {
printf("[ ");
printValue(*slot);
printf(" ]");
}
printf("\n");
disassembleInstruction(vm.chunk,
(int)(vm.ip - vm.chunk->code));
disassembleInstruction(
&frame->closure->function->chunk,
(int)(frame->ip - frame->closure->function->chunk.code));
#endif
uint8_t instruction;
switch (instruction = READ_BYTE()) {
case OP_CONSTANT: {
Value constant = READ_CONSTANT();
push(constant);
case OP_CONSTANT: {
Value constant = READ_CONSTANT();
push(constant);
break;
}
case OP_NIL:
push(NIL_VAL);
break;
case OP_TRUE:
push(BOOL_VAL(true));
break;
case OP_FALSE:
push(BOOL_VAL(false));
break;
case OP_POP:
pop();
break;
case OP_GET_LOCAL: {
uint8_t slot = READ_BYTE();
push(frame->slots[slot]);
break;
}
case OP_SET_LOCAL: {
uint8_t slot = READ_BYTE();
vm.stack[slot] = peek(0);
break;
}
case OP_GET_GLOBAL: {
ObjString *name = READ_STRING();
Value value;
if (!tableGet(&vm.globals, name, &value)) {
runtimeError("Undefined variable '%s'.", name->chars);
return INTERPRET_RUNTIME_ERROR;
}
push(value);
break;
}
case OP_DEFINE_GLOBAL: {
ObjString *name = READ_STRING();
tableSet(&vm.globals, name, peek(0));
pop();
break;
}
case OP_SET_GLOBAL: {
ObjString *name = READ_STRING();
if (tableSet(&vm.globals, name, peek(0))) {
tableDelete(&vm.globals, name);
runtimeError("Undefined variable '%s'.", name->chars);
return INTERPRET_RUNTIME_ERROR;
}
break;
}
case OP_GET_UPVALUE: {
uint8_t slot = READ_BYTE();
push(*frame->closure->upvalues[slot]->location);
break;
}
case OP_SET_UPVALUE: {
uint8_t slot = READ_BYTE();
*frame->closure->upvalues[slot]->location = peek(0);
break;
}
case OP_GET_PROPERTY: {
if (!IS_INSTANCE(peek(0))) {
runtimeError("Only instances have properties.");
return INTERPRET_RUNTIME_ERROR;
}
ObjInstance *instance = AS_INSTANCE(peek(0));
ObjString *name = READ_STRING();
Value value;
if (tableGet(&instance->fields, name, &value)) {
pop(); // Instance.
push(value);
break;
}
case OP_NIL: push(NIL_VAL); break;
case OP_TRUE: push(BOOL_VAL(true)); break;
case OP_FALSE: push(BOOL_VAL(false)); break;
case OP_EQUAL: {
Value b = pop();
Value a = pop();
push(BOOL_VAL(valuesEqual(a, b)));
break;
if (!bindMethod(instance->t, name)) {
return INTERPRET_RUNTIME_ERROR;
}
case OP_GREATER: BINARY_OP(BOOL_VAL, >); break;
case OP_LESS: BINARY_OP(BOOL_VAL, <); break;
case OP_ADD: BINARY_OP(NUMBER_VAL, +); break;
case OP_SUBTRACT: BINARY_OP(NUMBER_VAL, -); break;
case OP_MULTIPLY: BINARY_OP(NUMBER_VAL, *); break;
case OP_DIVIDE: BINARY_OP(NUMBER_VAL, /); break;
case OP_NOT:
push(BOOL_VAL(isFalsey(pop())));
break;
case OP_NEGATE:
if (!IS_NUMBER(peek(0))) {
runtimeError("Operand must be a number.");
return INTERPRET_RUNTIME_ERROR;
break;
}
case OP_SET_PROPERTY: {
if (!IS_INSTANCE(peek(1))) {
runtimeError("Only instances have fields.");
return INTERPRET_RUNTIME_ERROR;
}
ObjInstance *instance = AS_INSTANCE(peek(1));
tableSet(&instance->fields, READ_STRING(), peek(0));
Value value = pop();
pop();
push(value);
break;
}
case OP_EQUAL: {
Value b = pop();
Value a = pop();
push(BOOL_VAL(valuesEqual(a, b)));
break;
}
case OP_GREATER:
BINARY_OP(BOOL_VAL, >);
break;
case OP_LESS:
BINARY_OP(BOOL_VAL, <);
break;
case OP_ADD: {
if (IS_STRING(peek(0)) && IS_STRING(peek(1))) {
concatenate();
} else if (IS_NUMBER(peek(0)) && IS_NUMBER(peek(1))) {
double b = AS_NUMBER(pop());
double a = AS_NUMBER(pop());
push(NUMBER_VAL(a + b));
} else {
runtimeError("Operands must be two numbers or two strings.");
return INTERPRET_RUNTIME_ERROR;
}
break;
}
case OP_SUBTRACT:
BINARY_OP(NUMBER_VAL, -);
break;
case OP_MULTIPLY:
BINARY_OP(NUMBER_VAL, *);
break;
case OP_DIVIDE:
BINARY_OP(NUMBER_VAL, /);
break;
case OP_NOT:
push(BOOL_VAL(isFalsey(pop())));
break;
case OP_NEGATE:
if (!IS_NUMBER(peek(0))) {
runtimeError("Operand must be a number.");
return INTERPRET_RUNTIME_ERROR;
}
push(NUMBER_VAL(-AS_NUMBER(pop())));
break;
case OP_PRINT: {
printValue(pop());
printf("\n");
break;
}
case OP_JUMP: {
uint16_t offset = READ_SHORT();
frame->ip += offset;
break;
}
case OP_JUMP_IF_FALSE: {
uint16_t offset = READ_SHORT();
if (isFalsey(peek(0)))
frame->ip += offset;
break;
}
case OP_LOOP: {
uint16_t offset = READ_SHORT();
frame->ip -= offset;
break;
}
case OP_CALL: {
int argCount = READ_BYTE();
if (!callValue(peek(argCount), argCount)) {
return INTERPRET_RUNTIME_ERROR;
}
frame = &vm.frames[vm.frameCount - 1];
break;
}
case OP_INVOKE: {
ObjString *method = READ_STRING();
int argCount = READ_BYTE();
if (!invoke(method, argCount)) {
return INTERPRET_RUNTIME_ERROR;
}
frame = &vm.frames[vm.frameCount - 1];
break;
}
case OP_CLOSURE: {
ObjFunction *function = AS_FUNCTION(READ_CONSTANT());
ObjClosure *closure = newClosure(function);
push(OBJ_VAL(closure));
for (int i = 0; i < closure->upvalueCount; i++) {
uint8_t isLocal = READ_BYTE();
uint8_t index = READ_BYTE();
if (isLocal) {
closure->upvalues[i] = captureUpvalue(frame->slots + index);
} else {
closure->upvalues[i] = frame->closure->upvalues[index];
}
push(NUMBER_VAL(-AS_NUMBER(pop())));
break;
case OP_RETURN: {
printValue(pop());
printf("\n");
}
break;
}
case OP_CLOSE_UPVALUE:
closeUpvalues(vm.stackTop - 1);
pop();
break;
case OP_TYPE:
push(OBJ_VAL(newType(READ_STRING())));
break;
case OP_METHOD:
defineMethod(READ_STRING());
break;
case OP_RETURN:
Value result = pop();
closeUpvalues(frame->slots);
vm.frameCount--;
if (vm.frameCount == 0) {
pop();
return INTERPRET_OK;
}
vm.stackTop = frame->slots;
push(result);
frame = &vm.frames[vm.frameCount - 1];
break;
}
}
#undef READ_BYTE
#undef READ_SHORT
#undef READ_CONSTANT
#undef READ_STRING
#undef BINARY_OP
}
InterpretResult interpret(const char* source) {
Chunk chunk;
newChunk(&chunk);
if (!compile(source, &chunk)) {
freeChunk(&chunk);
InterpretResult interpret(const char *source) {
ObjFunction *function = compile(source);
if (function == NULL)
return INTERPRET_COMPILE_ERROR;
}
vm.chunk = &chunk;
vm.ip = vm.chunk->code;
push(OBJ_VAL(function));
ObjClosure *closure = newClosure(function);
pop();
push(OBJ_VAL(closure));
call(closure, 0);
InterpretResult result = run();
freeChunk(&chunk);
return result;
return run();
}

View File

@ -1,16 +1,36 @@
#ifndef ztl_vm_h
#define ztl_vm_h
#ifndef zlc_vm_h
#define zlc_vm_h
#include "chunk.h"
#include "object.h"
#include "table.h"
#include "value.h"
#define STACK_MAX 256
#define FRAMES_MAX 64
#define STACK_MAX (FRAMES_MAX * UINT8_COUNT)
typedef struct {
Chunk *chunk;
uint8_t *ip;
ObjClosure* closure;
uint8_t* ip;
Value* slots;
} CallFrame;
typedef struct {
CallFrame frames[FRAMES_MAX];
int frameCount;
Value stack[STACK_MAX];
Value *stackTop;
Value* stackTop;
Table globals;
Table strings;
ObjString* initString;
ObjUpvalue* openUpvalues;
size_t bytesAllocated;
size_t nextGC;
Obj* objects;
int grayCount;
int grayCapacity;
Obj** grayStack;
} VM;
typedef enum {
@ -19,11 +39,12 @@ typedef enum {
INTERPRET_RUNTIME_ERROR
} InterpretResult;
void newVM();
extern VM vm;
void initVM();
void freeVM();
InterpretResult interpret(const char* source);
void push(Value value);
Value pop();
#endif