add Q16.16 real, uint32, and int32 opcodes

This commit is contained in:
zongor 2025-06-14 14:38:04 -04:00
parent 0cd92bb919
commit e8d0cd5e96
6 changed files with 241 additions and 112 deletions

View File

@ -2,13 +2,13 @@
# -----------------------
# Native build (gcc)
CC_NATIVE = gcc
CFLAGS_NATIVE = -std=c89 -Wall -Wextra -Werror -Wno-unused-parameter
CFLAGS_NATIVE = -g -std=c89 -Wall -Wextra -Werror -Wno-unused-parameter
LDFLAGS_NATIVE =
LDLIBS_NATIVE =
# WASM build (emscripten)
CC_WASM = emcc
CFLAGS_WASM = -std=c89 -Wall -Wextra -Werror -Wno-unused-parameter #-s WASM=1
CFLAGS_WASM = -g -std=c89 -Wall -Wextra -Werror -Wno-unused-parameter #-s WASM=1
LDFLAGS_WASM = #-s WASM=1
LDLIBS_WASM =

View File

@ -1,6 +1,6 @@
#include "debug.h"
int core_dump(Data *memory, uint32_t memory_size) {
int core_dump(Word *memory, uint32_t memory_size) {
FILE *file = fopen("memory_dump.bin", "wb");
if (!file) {
perror("Failed to open file");

View File

@ -3,6 +3,6 @@
#include "vm.h"
int core_dump(Data *memory, uint32_t memory_size);
int core_dump(Word *memory, uint32_t memory_size);
#endif

View File

@ -7,7 +7,7 @@
/* #define MEMORY_SIZE 65536 /\* 64KB memory (adjustable) *\/ */
#define MEMORY_SIZE 1024
Data memory[MEMORY_SIZE] = {0}; /* Memory array */
Word memory[MEMORY_SIZE] = {0}; /* Memory array */
uint32_t pc = 1; /* Program counter */
void mainloop() {
@ -33,15 +33,23 @@ int main() {
memory[i++].u = 102;
memory[i++].u = 103;
memory[i++].u = 103;
memory[i++].u = OP_SUB;
memory[i++].u = OP_SUB_UINT;
memory[i++].u = 100;
memory[i++].u = 101;
memory[i++].u = 100;
memory[i++].u = OP_JGT_INT;
memory[i++].u = OP_JGT_UINT;
memory[i++].u = 100;
memory[i++].u = 99;
memory[i++].u = 1;
memory[i++].u = OP_REAL_TO_INT;
memory[i++].u = OP_REAL_TO_STRING;
memory[i++].u = 103;
memory[i++].u = 1;
memory[i++].u = 200;
memory[i++].u = OP_PRINT_STRING;
memory[i++].u = 201;
memory[i++].u = 1;
memory[i++].u = 1;
memory[i++].u = OP_REAL_TO_UINT;
memory[i++].u = 103;
memory[i++].u = 1;
memory[i++].u = 103;
@ -68,8 +76,8 @@ int main() {
memory[99].u = 0;
memory[100].u = 5;
memory[101].u = 1;
memory[102].f = 5.f;
memory[103].f = 5.f;
memory[102].q = FLOAT_TO_Q16_16(5.0f);
memory[103].q = FLOAT_TO_Q16_16(5.0f);
#ifdef __EMSCRIPTEN__
emscripten_set_main_loop(mainloop, 0, 1);

284
src/vm.c
View File

@ -1,11 +1,23 @@
#include "vm.h"
#include <string.h>
#include <unistd.h>
#define MAX_LEN_INT32 11
#define MAX_INT32 2147483647
#define MIN_INT32 -2147483648
const char radix_set[11] = "0123456789";
#define COMPARE_AND_JUMP(type, accessor, op) \
do { \
type value = memory[src1_addr].accessor; \
type value2 = memory[src2_addr].accessor; \
uint32_t jump_target = dest_addr; \
pc = (value op value2) ? jump_target : pc; \
return pc; \
} while (0)
/**
* String copy in data memory.
*/
void mem_strcpy(Data *memory, const char *str, uint32_t length,
void mem_strcpy(Word *memory, const char *str, uint32_t length,
uint32_t dest_addr) {
memory[dest_addr].u = length;
uint32_t buffer_addr = dest_addr + 1;
@ -18,7 +30,7 @@ void mem_strcpy(Data *memory, const char *str, uint32_t length,
/**
* Step to the next opcode in the vm.
*/
uint32_t step_vm(Data *memory, uint32_t memory_size, uint32_t pc) {
uint32_t step_vm(Word *memory, uint32_t memory_size, uint32_t pc) {
Opcode opcode = memory[pc].u;
uint32_t src1_addr = memory[pc + 1].u;
uint32_t src2_addr = memory[pc + 2].u;
@ -34,147 +46,233 @@ uint32_t step_vm(Data *memory, uint32_t memory_size, uint32_t pc) {
switch (opcode) {
case OP_HALT:
return 0;
case OP_ADD:
case OP_ADD_INT:
memory[dest_addr].u = memory[src1_addr].i + memory[src2_addr].i;
return pc;
case OP_SUB_INT:
memory[dest_addr].u = memory[src1_addr].i - memory[src2_addr].i;
return pc;
case OP_MUL_INT:
memory[dest_addr].u = memory[src1_addr].i * memory[src2_addr].i;
return pc;
case OP_DIV_INT:
memory[dest_addr].u = memory[src1_addr].i / memory[src2_addr].i;
return pc;
case OP_ADD_UINT:
memory[dest_addr].u = memory[src1_addr].u + memory[src2_addr].u;
return pc;
case OP_SUB:
case OP_SUB_UINT:
memory[dest_addr].u = memory[src1_addr].u - memory[src2_addr].u;
return pc;
case OP_MUL:
case OP_MUL_UINT:
memory[dest_addr].u = memory[src1_addr].u * memory[src2_addr].u;
return pc;
case OP_DIV:
case OP_DIV_UINT:
memory[dest_addr].u = memory[src1_addr].u / memory[src2_addr].u;
return pc;
case OP_ADD_REAL:
memory[dest_addr].f = memory[src1_addr].f + memory[src2_addr].f;
memory[dest_addr].q = memory[src1_addr].q + memory[src2_addr].q;
return pc;
case OP_SUB_REAL:
memory[dest_addr].f = memory[src1_addr].f - memory[src2_addr].f;
memory[dest_addr].q = memory[src1_addr].q - memory[src2_addr].q;
return pc;
case OP_MUL_REAL:
memory[dest_addr].f = memory[src1_addr].f * memory[src2_addr].f;
return pc;
case OP_MUL_REAL: {
int32_t a = memory[src1_addr].q;
int32_t b = memory[src2_addr].q;
/* Extract integer and fractional parts */
int32_t a_int = a & Q16_16_INT_MASK;
int32_t a_frac = a & Q16_16_FRACTION_MASK;
int32_t b_int = b & Q16_16_INT_MASK;
int32_t b_frac = b & Q16_16_FRACTION_MASK;
case OP_DIV_REAL:
if (memory[src2_addr].f == 0.0f) {
/* Compute terms with explicit casting to prevent overflow */
int32_t term1 = a_int * b_int; /* Integer × Integer */
int32_t term2 = a_int * b_frac; /* Integer × Fractional */
int32_t term3 = a_frac * b_int; /* Fractional × Integer */
int32_t term4 = a_frac * b_frac; /* Fractional × Fractional */
/* Scale terms back to Q16.16 (avoid shifting negative values) */
int32_t scaled_term1 = term1;
int32_t scaled_term2 = (term2 >> 16);
int32_t scaled_term3 = (term3 >> 16);
int32_t scaled_term4 = (term4 >> 16); /* 16-bit shift for 1/65536 scaling */
/* Combine scaled terms with overflow checks */
int32_t result = scaled_term1 + scaled_term2 + scaled_term3 + scaled_term4;
memory[dest_addr].q = result;
return pc;
}
case OP_DIV_REAL: {
int32_t a = memory[src1_addr].q;
int32_t b = memory[src2_addr].q;
if (b == 0) {
printf("Division by zero error at address %d\n", pc - 4);
return 0;
}
memory[dest_addr].f = memory[src1_addr].f / memory[src2_addr].f;
return pc;
case OP_REAL_TO_INT: {
memory[dest_addr].u = (uint32_t)memory[src1_addr].f;
/* Check for overflow */
int32_t a_int = a >> 16;
int32_t b_int = b >> 16;
/* If a_int / b_int would overflow, clamp */
if (b_int == 0 || (a_int > 0 && b_int < 0 && a_int > (MAX_INT32 / b_int)) ||
(a_int < 0 && b_int > 0 && a_int < (MIN_INT32 / b_int))) {
return (a < 0) ? MIN_INT32 : MAX_INT32;
}
/* Scale numerator and divide */
int32_t scaled_a = a << 16;
int32_t result = scaled_a / b;
memory[dest_addr].q = result;
return pc;
}
case OP_INT_TO_REAL: {
memory[dest_addr].f = (float)memory[src1_addr].u;
case OP_REAL_TO_INT:
memory[dest_addr].i = (int32_t)(memory[src1_addr].q >> 16);
return pc;
}
case OP_INT_TO_REAL:
memory[dest_addr].q = (int32_t)(memory[src1_addr].i << 16);
return pc;
case OP_REAL_TO_UINT:
memory[dest_addr].u = (int32_t)(memory[src1_addr].q >> 16);
return pc;
case OP_UINT_TO_REAL:
memory[dest_addr].q = (uint32_t)(memory[src1_addr].u << 16);
return pc;
case OP_MOV:
memory[dest_addr] = memory[src1_addr];
return pc;
case OP_JMP:
pc = src1_addr; /* Jump to address */
return pc;
case OP_JEQ_UINT: {
COMPARE_AND_JUMP(uint32_t, u, ==);
}
case OP_JGT_UINT: {
COMPARE_AND_JUMP(uint32_t, u, >);
}
case OP_JLT_UINT: {
COMPARE_AND_JUMP(uint32_t, u, <);
}
case OP_JLE_UINT: {
COMPARE_AND_JUMP(uint32_t, u, <=);
}
case OP_JGE_UINT: {
COMPARE_AND_JUMP(uint32_t, u, >=);
}
case OP_JEQ_INT: {
uint32_t value = memory[src1_addr].u;
uint32_t value2 = memory[src2_addr].u;
uint32_t jump_target = dest_addr;
pc = (value == value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, i, ==);
}
case OP_JGT_INT: {
uint32_t value = memory[src1_addr].u;
uint32_t value2 = memory[src2_addr].u;
uint32_t jump_target = dest_addr;
pc = (value > value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, i, >);
}
case OP_JLT_INT: {
uint32_t value = memory[src1_addr].u;
uint32_t value2 = memory[src2_addr].u;
uint32_t jump_target = dest_addr;
pc = (value < value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, i, <);
}
case OP_JLE_INT: {
uint32_t value = memory[src1_addr].u;
uint32_t value2 = memory[src2_addr].u;
uint32_t jump_target = dest_addr;
pc = (value <= value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, i, <=);
}
case OP_JGE_INT: {
uint32_t value = memory[src1_addr].u;
uint32_t value2 = memory[src2_addr].u;
uint32_t jump_target = dest_addr;
pc = (value >= value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, i, >=);
}
case OP_JEQ_REAL: {
float value = memory[src1_addr].f;
float value2 = memory[src2_addr].f;
uint32_t jump_target = dest_addr;
pc = (value == value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, i, ==);
}
case OP_JGT_REAL: {
float value = memory[src1_addr].f;
float value2 = memory[src2_addr].f;
uint32_t jump_target = dest_addr;
pc = (value > value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, u, >);
}
case OP_JLT_REAL: {
float value = memory[src1_addr].f;
float value2 = memory[src2_addr].f;
uint32_t jump_target = dest_addr;
pc = (value < value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, u, <);
}
case OP_JGE_REAL: {
float value = memory[src1_addr].f;
float value2 = memory[src2_addr].f;
uint32_t jump_target = dest_addr;
pc = (value >= value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, u, >=);
}
case OP_JLE_REAL: {
float value = memory[src1_addr].f;
float value2 = memory[src2_addr].f;
uint32_t jump_target = dest_addr;
pc = (value <= value2) ? jump_target : pc;
return pc;
COMPARE_AND_JUMP(int32_t, u, <=);
}
case OP_INT_TO_STRING: {
int32_t a = (int32_t)memory[src1_addr].u;
char buffer[32];
sprintf(buffer, "%d", a);
mem_strcpy(memory, buffer, strlen(buffer), dest_addr);
int32_t v = memory[src1_addr].i;
char buffer[MAX_LEN_INT32];
int64_t n = v;
bool neg = n < 0;
if (neg)
n = -n;
int i = MAX_LEN_INT32;
do {
buffer[--i] = radix_set[n % 10];
n /= 10;
} while (n > 0);
if (neg)
buffer[--i] = '-';
/* Ensure at least one digit is written for 0 */
if (v == 0)
buffer[--i] = '0';
/* Copy from buffer[i] to buffer + MAX_LEN_INT32 */
mem_strcpy(memory, buffer + i, MAX_LEN_INT32 - i, dest_addr);
return pc;
}
case OP_REAL_TO_STRING: {
float a = memory[src1_addr].f;
char buffer[32];
sprintf(buffer, "%f", a);
mem_strcpy(memory, buffer, strlen(buffer), dest_addr);
int32_t q = memory[src1_addr].q;
char buffer[32]; /* Max 10 digits for integer part + 6 for fractional + sign
+ '.' + null */
int i = 0, j = 0;
/* Handle negative numbers */
if (q < 0) {
buffer[i++] = '-';
q = -q;
}
/* Extract integer part (top 16 bits) */
uint32_t int_part = q >> 16;
/* Extract fractional part (bottom 16 bits) */
uint32_t frac_part = q & 0xFFFF;
/* Convert integer part to string (reverse order) */
if (int_part == 0) {
buffer[i++] = radix_set[0];
} else {
char tmp[16];
int tmp_i = 0;
while (int_part > 0) {
tmp[tmp_i++] = radix_set[int_part % 10];
int_part /= 10;
}
while (tmp_i > 0) {
buffer[i++] = tmp[--tmp_i];
}
}
/* Convert fractional part to 6 decimal digits */
buffer[i++] = '.';
for (j = 0; j < 6; j++) {
frac_part *= 10;
buffer[i++] =
radix_set[frac_part >> 16]; /* Get integer part of (frac_part * 10) */
frac_part &= 0xFFFF; /* Keep fractional part for next digit */
}
/* Null-terminate */
buffer[i] = '\0';
/* Copy to memory */
mem_strcpy(memory, buffer, i, dest_addr);
return pc;
}
case OP_READ_STRING: {
@ -184,7 +282,7 @@ uint32_t step_vm(Data *memory, uint32_t memory_size, uint32_t pc) {
int ch = getchar();
if (ch == '\n' || ch == EOF) {
memory[buffer_addr + (length / 4)].c[length % 4] = '\0';
break;
break;
}
memory[buffer_addr + (length / 4)].c[length % 4] = ch;
length++;
@ -199,7 +297,7 @@ uint32_t step_vm(Data *memory, uint32_t memory_size, uint32_t pc) {
for (i = 0; i < length; i++) {
uint8_t ch = memory[string_addr + (i / 4)].c[i % 4];
if (ch == '\0')
break;
break;
putchar(ch);
}
putchar('\n');
@ -221,7 +319,7 @@ uint32_t step_vm(Data *memory, uint32_t memory_size, uint32_t pc) {
uint32_t char2 = memory[addr2 + i].u;
if (char1 != char2) {
equal = 0;
break;
break;
}
if ((char1 & 0xFF) == '\0' && (char2 & 0xFF) == '\0')
return pc;

View File

@ -3,24 +3,46 @@
#include "common.h"
/* Constants for Q16.16 */
#define Q16_16_SCALE (1 << 16)
#define Q16_16_SCALE_FLOAT 65536.0f
#define Q16_16_FRACTION_MASK 0x0000FFFF
#define Q16_16_INT_MASK 0xFFFF0000
/* Convert float to Q16.16 (with rounding) */
#define FLOAT_TO_Q16_16(f) ((int32_t)((f) * Q16_16_SCALE_FLOAT + 0.5f))
/* Convert Q16.16 to float */
#define Q16_16_TO_FLOAT(q) ((float)(q) / Q16_16_SCALE_FLOAT)
typedef union {
float f;
uint32_t u;
char c[4];
} Data;
int32_t i; /* Integers */
int32_t q; /* Q16.16 (32-bit fixed-point) */
uint32_t u; /* Unsigned integers */
char c[4]; /* 4 Byte char array for string packing */
} Word;
typedef enum {
OP_HALT, /* terminate execution */
OP_ADD, /* dest = src1 + src2 */
OP_SUB, /* dest = src1 - src2 */
OP_MUL, /* dest = src1 * src2 */
OP_DIV, /* dest = src1 / src2 */
OP_ADD_INT, /* dest = src1 + src2 */
OP_SUB_INT, /* dest = src1 - src2 */
OP_MUL_INT, /* dest = src1 * src2 */
OP_DIV_INT, /* dest = src1 / src2 */
OP_JEQ_INT, /* jump to address dest if src1 as int == src2 as int */
OP_JGT_INT, /* jump to address dest if src1 as int > src2 as int*/
OP_JLT_INT, /* jump to address dest if src1 as int < src2 as int */
OP_JLE_INT, /* jump to address dest if src1 as int <= src2 as int */
OP_JGE_INT, /* jump to address dest if src1 as int >= src2 as int*/
OP_INT_TO_REAL, /* dest = src1 as f32 */
OP_ADD_UINT, /* dest = src1 + src2 */
OP_SUB_UINT, /* dest = src1 - src2 */
OP_MUL_UINT, /* dest = src1 * src2 */
OP_DIV_UINT, /* dest = src1 / src2 */
OP_JEQ_UINT, /* jump to address dest if src1 as int == src2 as uint */
OP_JGT_UINT, /* jump to address dest if src1 as int > src2 as uint*/
OP_JLT_UINT, /* jump to address dest if src1 as int < src2 as uint */
OP_JLE_UINT, /* jump to address dest if src1 as int <= src2 as uint */
OP_JGE_UINT, /* jump to address dest if src1 as int >= src2 as uint*/
OP_UINT_TO_REAL, /* dest = src1 as f32 */
OP_ADD_REAL, /* dest = src1 + src2 */
OP_SUB_REAL, /* dest = src1 - src2 */
OP_MUL_REAL, /* dest = src1 * src2 */
@ -31,6 +53,7 @@ typedef enum {
OP_JLT_REAL, /* jump to address dest if src1 as real < src2 as real */
OP_JLE_REAL, /* jump to address dest if src1 as real <= src2 as real */
OP_REAL_TO_INT, /* dest = src1 as int */
OP_REAL_TO_UINT, /* dest = src1 as int */
OP_MOV, /* dest = src1 */
OP_JMP, /* jump to address src1 unconditionally */
OP_INT_TO_STRING, /* dest = src1 as str */
@ -40,6 +63,6 @@ typedef enum {
OP_CMP_STRING, /* dest = src1 */
} Opcode;
uint32_t step_vm(Data *memory, uint32_t memory_size, uint32_t pc);
uint32_t step_vm(Word *memory, uint32_t memory_size, uint32_t pc);
#endif