1
0
Fork 0
undar-lang/src/arch/linux-tui/main.c

270 lines
6.8 KiB
C

#include "../../tools/assembler/assembler.h"
#include "../../vm/vm.h"
#include "devices.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_SRC_SIZE 16384
static DeviceOps console_device_ops = {.open = console_open,
.read = console_read,
.write = console_write,
.close = console_close,
.ioctl = console_ioctl,
.refresh = nil};
static ConsoleDeviceData console_data = {0};
// Function to save VM state to ROM file
bool saveVM(const char *filename, VM *vm) {
FILE *file = fopen(filename, "wb");
if (!file) {
perror("Failed to open file for writing");
return false;
}
// Write VM state (locals and pointers)
if (fwrite(&vm->pc, sizeof(u32), 1, file) != 1 ||
fwrite(&vm->cp, sizeof(u32), 1, file) != 1 ||
fwrite(&vm->fp, sizeof(u32), 1, file) != 1 ||
fwrite(&vm->sp, sizeof(u32), 1, file) != 1 ||
fwrite(&vm->mp, sizeof(u32), 1, file) != 1 ||
fwrite(&vm->dc, sizeof(u32), 1, file) != 1 ||
fwrite(&vm->flag, sizeof(i32), 1, file) != 1) {
fprintf(stderr, "Failed to write VM state\n");
fclose(file);
return false;
}
// Write code section
if (fwrite(vm->code, 1, vm->cp, file) != vm->cp) {
fprintf(stderr, "Failed to write code section\n");
fclose(file);
return false;
}
// Write memory section
if (fwrite(vm->memory, 1, vm->mp, file) != vm->mp) {
fprintf(stderr, "Failed to write memory section\n");
fclose(file);
return false;
}
fclose(file);
return true;
}
// Function to load VM state from ROM file
bool loadVM(const char *filename, VM *vm) {
FILE *file = fopen(filename, "rb");
if (!file) {
perror("Failed to open ROM file");
return false;
}
// Read VM state (locals and pointers)
if (fread(&vm->pc, sizeof(u32), 1, file) != 1 ||
fread(&vm->cp, sizeof(u32), 1, file) != 1 ||
fread(&vm->fp, sizeof(u32), 1, file) != 1 ||
fread(&vm->sp, sizeof(u32), 1, file) != 1 ||
fread(&vm->mp, sizeof(u32), 1, file) != 1 ||
fread(&vm->dc, sizeof(u32), 1, file) != 1 ||
fread(&vm->flag, sizeof(i32), 1, file) != 1) {
fprintf(stderr, "Failed to read VM state\n");
fclose(file);
return false;
}
// Read code section
if (fread(vm->code, 1, vm->cp, file) != vm->cp) {
fprintf(stderr, "Failed to read code section\n");
fclose(file);
return false;
}
// Read memory section
if (fread(vm->memory, 1, vm->mp, file) != vm->mp) {
fprintf(stderr, "Failed to read memory section\n");
fclose(file);
return false;
}
fclose(file);
return true;
}
// Function to compile and optionally save
bool compileAndSave(const char *source_file, const char *output_file, VM *vm) {
USED(vm);
USED(output_file);
USED(source_file);
return true;
}
#ifdef STATIC
#define SCOPES_COUNT 2048
SymbolTable scopes[SCOPES_COUNT];
#endif
void symbol_table_init(ScopeTable *t) {
#ifdef STATIC
memset(scopes, 0, SCOPES_COUNT * sizeof(SymbolTable));
t->scopes = scopes;
t->count = 0;
t->capacity = SCOPES_COUNT;
#else
t->scopes = calloc(16, sizeof(SymbolTable));
t->count = 0;
t->capacity = 16;
#endif
// Make sure that all the parents are the 'global' namespace.
for (u32 i = 0; i < t->capacity; i++) {
t->scopes[i].parent = -1;
}
}
bool table_realloc(ScopeTable *table) {
#ifdef STATIC
if (table->count >= table->capacity) {
return false;
}
#else
if (table->count >= table->capacity) {
table->capacity *= 2;
table->scopes =
realloc(table->scopes, table->capacity * sizeof(SymbolTable));
// Make sure that all the parents are the 'global' namespace.
for (u32 i = table->count; i < table->capacity; i++) {
table->scopes[i].parent = -1;
}
}
#endif
return true;
}
// Function to assemble and optionally save
bool assembleAndSave(const char *source_file, const char *output_file, VM *vm) {
FILE *f = fopen(source_file, "rb");
if (!f) {
perror("fopen");
return false;
}
static char source[MAX_SRC_SIZE + 1];
fseek(f, 0, SEEK_END);
long len = ftell(f);
fseek(f, 0, SEEK_SET);
if (len >= MAX_SRC_SIZE) {
fprintf(stderr, "Source is larger than buffer\n");
fclose(f);
return false;
}
size_t read = fread(source, 1, len, f);
source[read] = '\0';
fclose(f);
ScopeTable table = {0};
symbol_table_init(&table);
assemble(vm, &table, source);
#ifndef STATIC
free(table.scopes);
#endif
if (output_file) {
if (!saveVM(output_file, vm)) {
printf("Failed to save VM to %s\n", output_file);
return false;
}
printf("VM saved to %s\n", output_file);
}
return true;
}
i32 main(i32 argc, char *argv[]) {
bool dump_rom = false;
char *input_file = nil;
char *output_file = nil;
bool is_rom = false;
bool is_ir = false;
// Parse command line arguments
for (i32 i = 1; i < argc; i++) {
if (strcmp(argv[i], "-o") == 0 || strcmp(argv[i], "--dump-rom") == 0) {
dump_rom = true;
} else if (input_file == nil) {
// This is the input file
input_file = argv[i];
// Check if it's a ROM file
const char *ext = strrchr(argv[i], '.');
if (ext && (strcmp(ext, ".rom") == 0)) {
is_rom = true;
}
if (ext && (strcmp(ext, ".ir") == 0)) {
is_ir = true;
}
} else if (output_file == nil && dump_rom) {
// This is the output file for -o flag
output_file = argv[i];
}
}
VM vm = {0};
bool compilation_success = true;
if (input_file) {
if (is_rom) {
// Load ROM file directly
compilation_success = loadVM(input_file, &vm);
} else if (is_ir) {
// Compile Lisp file
if (dump_rom && output_file) {
compilation_success = assembleAndSave(input_file, output_file, &vm);
} else {
compilation_success = assembleAndSave(input_file, nil, &vm);
}
} else {
if (dump_rom && output_file) {
compilation_success = compileAndSave(input_file, output_file, &vm);
} else {
compilation_success = compileAndSave(input_file, nil, &vm);
}
}
} else {
printf("usage: undar <src.ul>...");
return 1;
}
if (dump_rom) {
return (compilation_success) ? EXIT_SUCCESS : EXIT_FAILURE;
}
// If dump_rom flag was set without specifying output file, use default
if (dump_rom && !is_rom && !output_file) {
if (!saveVM("memory_dump.bin", &vm)) {
printf("Failed to save VM to memory_dump.bin\n");
return EXIT_FAILURE;
}
printf("VM saved to memory_dump.bin\n");
return EXIT_SUCCESS;
}
vm_register_device(&vm, "/dev/term/0", "terminal", &console_data,
&console_device_ops, 4);
bool running = true;
while (running) {
if (!step_vm(&vm)) {
running = false;
break;
}
}
return vm.flag;
}