undar-lang/vm/vm.c

656 lines
13 KiB
C

#include "vm.h"
#define FRAME_HEADER_SIZE 12
u32 pc; /* program counter */
u32 cp; /* code pointer */
u32 mp; /* memory pointer */
u32 fp; /* frame pointer */
u8 lc; /* child local count */
u8 status; /* status flag */
u8 interrupt; /* device interrupt */
u32 *code; /* code */
u8 *mem; /* memory */
#define MAX_LEN_INT32 11
#define MAX_INT32 2147483647
#define MIN_INT32 -2147483648
const char radix_set[11] = "0123456789";
u32 str_alloc(const char *str, u32 length) {
u32 str_addr = mp;
u32 i = 0;
mp += 4;
while (i < length) {
mem[mp++] = str[i++];
}
mem[mp++] = '\0';
WRITE_U32(str_addr, length);
return str_addr;
}
bool step_vm() {
u32 instruction = code[pc++];
u8 opcode = DECODE_OP(instruction);
u32 *locals = (u32*)(&mem[fp]);
u32 *globals = (u32*)(mem);
switch (opcode) {
case OP_HALT: {
/* no need to decode, all are zeros */
return false;
}
case OP_CALL: {
DECODE_A(instruction)
/* function to jump to */
u32 fn_ptr = locals[dest];
/* get mp in 'global indexing mode' */
u32 gmp = mp / 4;
/* reset child locals counter */
lc = 0;
/* push parents frame value to reset the heap to */
globals[gmp] = fp;
/* push return address to child frame */
globals[gmp + 1] = pc;
/* push local address to return the value to */
globals[gmp + 2] = fp + (src2 * 4);
/* increase the mp to new size */
mp += FRAME_HEADER_SIZE;
/* now set the frame pointer, where the locals start */
fp = mp;
/* move mp forward by count many locals */
mp += (4 * src1);
/* jump to dest_ptr */
pc = fn_ptr;
return true;
}
case OP_RETURN: {
DECODE_B(instruction)
u32 i, size = 0;
u32 return_value = locals[dest];
bool is_ptr = (((u32)(1)) << 15) & imm;
bool replaces_value = (((u32)(1)) << 14) & imm;
/* reset mp to saved mp, use header size to get "real" start of frame */
u32 frame_start = (fp / 4) - 3;
u32 parent_fp = globals[frame_start];
u32 return_address = globals[frame_start + 1];
u32 parent_local_return_address = globals[frame_start + 2];
USED(replaces_value);
/* reset memory to parents end of memory */
mp = fp - FRAME_HEADER_SIZE;
/* reset the frame pointer */
fp = parent_fp;
if (is_ptr) {
/* copy value to end of mp if it is a pointer */
WRITE_U32(parent_local_return_address, mp);
size = READ_U32(return_value);
WRITE_U32(mp, size);
mp += 4;
for (i = 0; i < size; i++) {
u8 value = READ_U8(return_value + i);
WRITE_U8(mp, value);
mp++;
}
} else {
/* otherwise just write the return value to its location */
WRITE_U32(parent_local_return_address, return_value);
}
/* jump to parent frame */
pc = return_address;
return true;
}
case OP_SYSCALL: {
DECODE_A(instruction)
u32 id = dest; /* syscall id */
u32 size = src1; /* size of heap at that pointer */
u32 rd = fp + (src2 * 4); /* the pointer */
status = syscall(id, size, rd);
return true;
}
case OP_PUSH: {
DECODE_B(instruction)
USED(imm);
globals[(mp / 4) + lc + 3] = locals[dest];
lc++;
return true;
}
case OP_POP: {
DECODE_C(instruction)
USED(imm);
mp -= 4;
lc--;
return true;
}
case OP_LOAD_IMM: {
DECODE_B(instruction)
locals[dest] = imm;
return true;
}
case OP_LOAD_UPPER_IMM: {
DECODE_B(instruction)
u32 value = locals[dest];
locals[dest] = (value | (((u32)(imm)) << 16));
return true;
}
case OP_LOAD_IND_8: {
}
case OP_LOAD_IND_16: {
}
case OP_LOAD_IND_32: {
}
case OP_LOAD_ABS_8: {
}
case OP_LOAD_ABS_16: {
}
case OP_LOAD_ABS_32: {
}
case OP_LOAD_OFF_8: {
}
case OP_LOAD_OFF_16: {
}
case OP_LOAD_OFF_32: {
}
case OP_STORE_ABS_8: {
}
case OP_STORE_ABS_16: {
}
case OP_STORE_ABS_32: {
}
case OP_STORE_IND_8: {
}
case OP_STORE_IND_16: {
}
case OP_STORE_IND_32: {
}
case OP_STORE_OFF_8: {
}
case OP_STORE_OFF_16: {
}
case OP_STORE_OFF_32: {
}
case OP_MEM_ALLOC: {
DECODE_A(instruction)
u32 size = locals[src1];
locals[dest] = mp;
WRITE_U32(mp, size);
USED(src2);
mp += (size + 4);
return true;
}
case OP_MEM_CPY_8: {
DECODE_A(instruction)
u32 i = 0;
u32 mdest = locals[dest];
u32 msrc = locals[src1];
u32 count = locals[src2];
if (mdest + count >= mp) {
status = 1;
return true;
}
for (i = 0; i < count; i++) {
mem[msrc + i] = mem[mdest + i];
}
status = 0;
return true;
}
case OP_MEM_CPY_16: {
DECODE_A(instruction)
u32 i = 0;
u32 mdest = locals[dest];
u32 msrc = locals[src1];
u32 count = locals[src2] * 2;
if (mdest + count >= mp) {
status = 1;
return true;
}
for (i = 0; i < count; i++) {
u16 value = READ_U16(mdest + i);
WRITE_U16(msrc + i, value);
}
status = 0;
return true;
}
case OP_MEM_CPY_32: {
DECODE_A(instruction)
u32 i = 0;
u32 mdest = locals[dest];
u32 msrc = locals[src1];
u32 count = locals[src2];
if (mdest + count >= mp) {
status = 1;
return true;
}
for (i = 0; i < count; i++) {
globals[msrc + i] = globals[mdest + i];
}
status = 0;
return true;
}
case OP_MEM_SET_8: {
DECODE_A(instruction)
u32 i, start, end;
u32 rd = fp + (dest * 4);
u32 r1 = fp + (src1 * 4);
u32 r2 = fp + (src2 * 4);
u8 value = (u8)READ_U32(r1);
u32 count = READ_U32(r2);
if (r2 == 0) {
status = 1;
return true;
}
start = READ_U32(rd);
end = start + count;
if (start >= mp || r2 > mp || end > mp) {
status = 1;
return true;
}
for (i = start; i < end; i++) {
mem[i] = value;
}
status = 0;
return true;
}
case OP_MEM_SET_16: {
DECODE_A(instruction)
u32 i, start, end;
u32 rd = fp + (dest * 4);
u32 r1 = fp + (src1 * 4);
u32 r2 = fp + (src2 * 4);
u16 value = (u16)READ_U32(r1);
u32 count = READ_U32(r2);
if (r2 == 0) {
status = 1;
return true;
}
start = READ_U32(rd);
end = start + count;
if (start >= mp || r2 > mp || end > mp) {
status = 1;
return true;
}
for (i = start; i < end; i += 2) {
WRITE_U16(i, value);
}
status = 0;
return true;
}
case OP_MEM_SET_32: {
DECODE_A(instruction)
u32 i, start, end;
u32 value = locals[src1];
u32 count = locals[src2];
if (count == 0) {
status = 1;
return true;
}
start = READ_U32(locals[dest]);
end = start + count;
if (start >= mp || count > mp || end > mp) {
status = 1;
return true;
}
for (i = start; i < end; i += 4) {
WRITE_U32(i, value);
}
status = 0;
return true;
}
case OP_MOV: {
DECODE_A(instruction)
USED(src2);
locals[dest] = locals[src1];
return true;
}
case OP_ADD_INT: {
MATH_OP(i32, +);
}
case OP_SUB_INT: {
MATH_OP(i32, -);
}
case OP_MUL_INT: {
MATH_OP(i32, *);
}
case OP_DIV_INT: {
MATH_OP(i32, /);
}
case OP_ADD_NAT: {
MATH_OP(u32, +);
}
case OP_SUB_NAT: {
MATH_OP(u32, -);
}
case OP_MUL_NAT: {
MATH_OP(u32, *);
}
case OP_DIV_NAT: {
MATH_OP(u32, /);
}
case OP_ADD_REAL: {
MATH_OP(i32, +);
}
case OP_SUB_REAL: {
MATH_OP(i32, -);
}
case OP_MUL_REAL: {
DECODE_A(instruction)
i32 src1_whole = (i32)locals[src1] >> 16;
i32 src2_whole = (i32)locals[src2] >> 16;
i32 src1_decimal = (i32)locals[src1] & 16;
i32 src2_decimal = (i32)locals[src2] & 16;
i32 result = 0;
result += (src1_whole * src2_whole) << 16;
result += (src1_whole * src2_decimal);
result += (src1_decimal * src2_whole);
result += ((src1_decimal * src2_decimal) >> 16) & 16;
locals[dest] = result;
return true;
}
case OP_DIV_REAL: {
DECODE_A(instruction)
i32 result;
i32 src1_val = (i32)locals[src1];
i32 src2_val = (i32)locals[src2];
u32 src2_reciprocal = 1;
src2_reciprocal <<= 31;
src2_reciprocal = (u32)(src2_reciprocal / src2_val);
result = src1_val * src2_reciprocal;
result <<= 1;
locals[dest] = result;
return true;
}
case OP_INT_TO_REAL: {
DECODE_A(instruction)
i32 result = (i32)locals[src1] << 16;
USED(src2);
locals[dest] = result;
return true;
}
case OP_INT_TO_NAT: {
DECODE_A(instruction)
u32 result = (u32)locals[src1];
USED(src2);
locals[dest] = result;
return true;
}
case OP_NAT_TO_REAL: {
DECODE_A(instruction)
i32 result = (i32)locals[src1] << 16;
USED(src2);
locals[dest] = result;
return true;
}
case OP_NAT_TO_INT: {
DECODE_A(instruction)
i32 result = (i32)locals[src1];
USED(src2);
locals[dest] = result;
return true;
}
case OP_REAL_TO_INT: {
DECODE_A(instruction)
i32 result = (i32)locals[src1] >> 16;
USED(src2);
locals[dest] = result;
return true;
}
case OP_REAL_TO_NAT: {
DECODE_A(instruction)
u32 result = (u32)locals[src1] >> 16;
USED(src2);
locals[dest] = result;
return true;
}
case OP_BIT_SHIFT_LEFT: {
MATH_OP_NO_CAST(<<);
}
case OP_BIT_SHIFT_RIGHT: {
MATH_OP_NO_CAST(>>);
}
case OP_BIT_SHIFT_R_EXT: {
MATH_OP(i32, >>);
}
case OP_BIT_AND: {
MATH_OP_NO_CAST(&);
}
case OP_BIT_OR: {
MATH_OP_NO_CAST(|);
}
case OP_BIT_XOR: {
MATH_OP_NO_CAST(^);
}
case OP_JMP_IMM: {
DECODE_C(instruction)
pc = imm;
return true;
}
case OP_JMP_ABS: {
DECODE_A(instruction)
u32 jmp_dest = locals[dest];
if (jmp_dest > cp) {
status = 1;
return true;
}
USED(src1);
USED(src2);
pc = jmp_dest;
return true;
}
case OP_JMP_OFF: {
DECODE_A(instruction)
u32 jmp_dest = locals[dest] + locals[src1];
if (jmp_dest > cp) {
status = 1;
return true;
}
USED(src2);
pc = jmp_dest;
return true;
}
case OP_JMP_FLAG: {
DECODE_A(instruction)
u32 mask;
u32 jmp_dest = locals[dest];
if (jmp_dest > cp) {
status = 1;
return true;
}
USED(src1);
USED(src2);
mask = -(u32)(status == 0);
pc = (jmp_dest & mask) | (pc & ~mask);
return true;
}
case OP_JEQ_INT: {
COMPARE_AND_JUMP(i32, ==);
}
case OP_JNE_INT: {
COMPARE_AND_JUMP(i32, !=);
}
case OP_JGT_INT: {
COMPARE_AND_JUMP(i32, >);
}
case OP_JLT_INT: {
COMPARE_AND_JUMP(i32, <);
}
case OP_JLE_INT: {
COMPARE_AND_JUMP(i32, <=);
}
case OP_JGE_INT: {
COMPARE_AND_JUMP(i32, >=);
}
case OP_JEQ_NAT: {
COMPARE_AND_JUMP(u32, ==);
}
case OP_JNE_NAT: {
COMPARE_AND_JUMP(u32, !=);
}
case OP_JGT_NAT: {
COMPARE_AND_JUMP(u32, >);
}
case OP_JLT_NAT: {
COMPARE_AND_JUMP(u32, <);
}
case OP_JLE_NAT: {
COMPARE_AND_JUMP(u32, <=);
}
case OP_JGE_NAT: {
COMPARE_AND_JUMP(u32, >=);
}
case OP_JEQ_REAL: {
COMPARE_AND_JUMP(i32, ==);
}
case OP_JNE_REAL: {
COMPARE_AND_JUMP(i32, !=);
}
case OP_JGE_REAL: {
COMPARE_AND_JUMP(i32, >=);
}
case OP_JGT_REAL: {
COMPARE_AND_JUMP(i32, >);
}
case OP_JLT_REAL: {
COMPARE_AND_JUMP(i32, <);
}
case OP_JLE_REAL: {
COMPARE_AND_JUMP(i32, <=);
}
case OP_INT_TO_STR: {
DECODE_A(instruction)
u32 i = MAX_LEN_INT32;
i32 v = (i32)locals[src1];
char buffer[MAX_LEN_INT32];
i32 n = v;
bool neg = n < 0;
USED(src2);
if (neg)
n = -n;
do {
buffer[--i] = radix_set[n % 10];
n /= 10;
} while (n > 0);
if (neg)
buffer[--i] = '-';
/* Ensure at least one digit is written for 0 */
if (v == 0)
buffer[--i] = '0';
/* Copy from buffer[i] to buffer + MAX_LEN_INT32 */
locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i);
return pc;
}
case OP_NAT_TO_STR: {
DECODE_A(instruction)
u32 v = (i32)locals[src1];
char buffer[MAX_LEN_INT32];
u32 n = v;
u32 i = MAX_LEN_INT32;
USED(src2);
do {
buffer[--i] = radix_set[n % 10];
n /= 10;
} while (n > 0);
/* Ensure at least one digit is written for 0 */
if (v == 0)
buffer[--i] = '0';
/* Copy from buffer[i] to buffer + MAX_LEN_INT32 */
locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i);
return pc;
}
case OP_REAL_TO_STR: {
DECODE_A(instruction)
u32 i = 0, j = 0;
i32 q = (i32)locals[src1];
char buffer[MAX_LEN_INT32];
u32 int_part, frac_part;
if (q < 0) {
buffer[i++] = '-';
q = -q;
}
int_part = q >> 16;
frac_part = q & 0xFFFF;
USED(src2);
if (int_part == 0) {
buffer[i++] = radix_set[0];
} else {
char tmp[16];
i32 tmp_i = 0;
while (int_part > 0) {
tmp[tmp_i++] = radix_set[int_part % 10];
int_part /= 10;
}
while (tmp_i > 0) {
buffer[i++] = tmp[--tmp_i];
}
}
buffer[i++] = '.';
for (j = 0; j < 6; j++) {
frac_part *= 10;
buffer[i++] = radix_set[frac_part >> 16];
frac_part &= 0xFFFF;
}
locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i);
return pc;
}
}
/* something went very wrong */
status = 255;
return false;
}