#include "vm.h" #define FRAME_HEADER_SIZE 12 u32 pc; /* program counter */ u32 cp; /* code pointer */ u32 mp; /* memory pointer */ u32 fp; /* frame pointer */ u8 lc; /* child local count */ u8 status; /* status flag */ u8 interrupt; /* device interrupt */ u32 *code; /* code */ u8 *mem; /* memory */ #define MAX_LEN_INT32 11 #define MAX_INT32 2147483647 #define MIN_INT32 -2147483648 const char radix_set[11] = "0123456789"; u32 str_alloc(char *str, u32 length) { u32 str_addr = mp; u8 *ptr = &mem[mp]; mcpy(ptr, &length, sizeof(u32)); ptr += 4; mcpy(ptr, str, length); ptr[length] = '\0'; mp += 4 + length + 1; return str_addr; } bool step_vm() { u32 instruction = code[pc++]; u8 opcode = DECODE_OP(instruction); u32 *locals = (u32*)(&mem[fp]); u32 *globals = (u32*)(mem); switch (opcode) { case OP_HALT: { /* no need to decode, all are zeros */ return false; } case OP_CALL: { DECODE_A(instruction) /* function to jump to */ u32 fn_ptr = locals[dest]; /* get mp in 'global indexing mode' */ u32 *header = &globals[mp / 4]; /* reset child locals counter */ lc = 0; /* push parents frame value to reset the heap to */ (*header++) = fp; /* push return address to child frame */ (*header++) = pc; /* push local address to return the value to */ (*header++) = fp + src2; /* increase the mp to new size */ mp += FRAME_HEADER_SIZE; /* now set the frame pointer, where the locals start */ fp = mp; /* move mp forward by count many locals */ mp += src1; /* jump to dest_ptr */ pc = fn_ptr; return true; } case OP_RETURN: { DECODE_B(instruction) u32 size = 0; u32 return_value = locals[dest]; bool is_ptr = (((u32)(1)) << 15) & imm; bool replaces_value = (((u32)(1)) << 14) & imm; /* reset mp to saved mp, use header size to get "real" start of frame */ u32 *frame_start = &globals[(fp / 4) - 3]; u32 parent_fp = *frame_start++; u32 return_address = *frame_start++; u32 parent_local_return_address = *frame_start++; USED(replaces_value); /* reset memory to parents end of memory */ mp = fp - FRAME_HEADER_SIZE; /* reset the frame pointer */ fp = parent_fp; if (is_ptr) { /* copy value to end of mp if it is a pointer */ globals[parent_local_return_address/4] = mp; size = globals[return_value/4]; globals[mp/4] = size; mp += 4; mcpy(&mem[mp], &mem[return_value], size); mp += size; } else { /* otherwise just write the return value to its location */ mcpy(&mem[parent_local_return_address], &return_value, sizeof(u32)); } /* jump to parent frame */ pc = return_address; return true; } case OP_SYSCALL: { DECODE_A(instruction) u32 id = dest; /* syscall id */ u32 size = src1; /* size of heap at that pointer */ u32 rd = fp + (src2 * 4); /* the pointer */ status = syscall(id, size, rd); return true; } case OP_PUSH: { DECODE_B(instruction) USED(imm); globals[(mp / 4) + lc + 3] = locals[dest]; lc++; return true; } case OP_POP: { DECODE_B(instruction) USED(dest); USED(imm); mp -= 4; lc--; return true; } case OP_LOAD_IMM: { DECODE_B(instruction) locals[dest] = imm; return true; } case OP_LOAD_UPPER_IMM: { DECODE_B(instruction) u32 value = locals[dest]; locals[dest] = (value | (((u32)(imm)) << 16)); return true; } case OP_LOAD_IND_8: { } case OP_LOAD_IND_16: { } case OP_LOAD_IND_32: { } case OP_LOAD_ABS_8: { } case OP_LOAD_ABS_16: { } case OP_LOAD_ABS_32: { } case OP_LOAD_OFF_8: { } case OP_LOAD_OFF_16: { } case OP_LOAD_OFF_32: { } case OP_STORE_ABS_8: { } case OP_STORE_ABS_16: { } case OP_STORE_ABS_32: { } case OP_STORE_IND_8: { } case OP_STORE_IND_16: { } case OP_STORE_IND_32: { } case OP_STORE_OFF_8: { } case OP_STORE_OFF_16: { } case OP_STORE_OFF_32: { } case OP_MEM_ALLOC: { DECODE_A(instruction) u32 size = locals[src1]; locals[dest] = mp; WRITE_U32(mp, size); USED(src2); mp += (size + 4); return true; } case OP_MEM_CPY_8: { DECODE_A(instruction) u32 i = 0; u32 mdest = locals[dest]; u32 msrc = locals[src1]; u32 count = locals[src2]; if (mdest + count >= mp) { status = 1; return true; } for (i = 0; i < count; i++) { mem[msrc + i] = mem[mdest + i]; } status = 0; return true; } case OP_MEM_CPY_16: { DECODE_A(instruction) u32 i = 0; u32 mdest = locals[dest]; u32 msrc = locals[src1]; u32 count = locals[src2] * 2; if (mdest + count >= mp) { status = 1; return true; } for (i = 0; i < count; i++) { u16 value = READ_U16(mdest + i); WRITE_U16(msrc + i, value); } status = 0; return true; } case OP_MEM_CPY_32: { DECODE_A(instruction) u32 i = 0; u32 mdest = locals[dest]; u32 msrc = locals[src1]; u32 count = locals[src2]; if (mdest + count >= mp) { status = 1; return true; } for (i = 0; i < count; i++) { globals[msrc + i] = globals[mdest + i]; } status = 0; return true; } case OP_MEM_SET_8: { DECODE_A(instruction) u32 i, start, end; u32 rd = fp + (dest * 4); u32 r1 = fp + (src1 * 4); u32 r2 = fp + (src2 * 4); u8 value = (u8)READ_U32(r1); u32 count = READ_U32(r2); if (r2 == 0) { status = 1; return true; } start = READ_U32(rd); end = start + count; if (start >= mp || r2 > mp || end > mp) { status = 1; return true; } for (i = start; i < end; i++) { mem[i] = value; } status = 0; return true; } case OP_MEM_SET_16: { DECODE_A(instruction) u32 i, start, end; u32 rd = fp + (dest * 4); u32 r1 = fp + (src1 * 4); u32 r2 = fp + (src2 * 4); u16 value = (u16)READ_U32(r1); u32 count = READ_U32(r2); if (r2 == 0) { status = 1; return true; } start = READ_U32(rd); end = start + count; if (start >= mp || r2 > mp || end > mp) { status = 1; return true; } for (i = start; i < end; i += 2) { WRITE_U16(i, value); } status = 0; return true; } case OP_MEM_SET_32: { DECODE_A(instruction) u32 i, start, end; u32 value = locals[src1]; u32 count = locals[src2]; if (count == 0) { status = 1; return true; } start = READ_U32(locals[dest]); end = start + count; if (start >= mp || count > mp || end > mp) { status = 1; return true; } for (i = start; i < end; i += 4) { WRITE_U32(i, value); } status = 0; return true; } case OP_MOV: { DECODE_A(instruction) USED(src2); locals[dest] = locals[src1]; return true; } case OP_ADD_INT: { MATH_OP(i32, +); } case OP_SUB_INT: { MATH_OP(i32, -); } case OP_MUL_INT: { MATH_OP(i32, *); } case OP_DIV_INT: { MATH_OP(i32, /); } case OP_ADD_NAT: { MATH_OP(u32, +); } case OP_SUB_NAT: { MATH_OP(u32, -); } case OP_MUL_NAT: { MATH_OP(u32, *); } case OP_DIV_NAT: { MATH_OP(u32, /); } case OP_ADD_REAL: { MATH_OP(i32, +); } case OP_SUB_REAL: { MATH_OP(i32, -); } case OP_MUL_REAL: { DECODE_A(instruction) i32 src1_whole = (i32)locals[src1] >> 16; i32 src2_whole = (i32)locals[src2] >> 16; i32 src1_decimal = (i32)locals[src1] & 16; i32 src2_decimal = (i32)locals[src2] & 16; i32 result = 0; result += (src1_whole * src2_whole) << 16; result += (src1_whole * src2_decimal); result += (src1_decimal * src2_whole); result += ((src1_decimal * src2_decimal) >> 16) & 16; locals[dest] = result; return true; } case OP_DIV_REAL: { DECODE_A(instruction) i32 result; i32 src1_val = (i32)locals[src1]; i32 src2_val = (i32)locals[src2]; u32 src2_reciprocal = 1; src2_reciprocal <<= 31; src2_reciprocal = (u32)(src2_reciprocal / src2_val); result = src1_val * src2_reciprocal; result <<= 1; locals[dest] = result; return true; } case OP_INT_TO_REAL: { DECODE_A(instruction) i32 result = (i32)locals[src1] << 16; USED(src2); locals[dest] = result; return true; } case OP_INT_TO_NAT: { DECODE_A(instruction) u32 result = (u32)locals[src1]; USED(src2); locals[dest] = result; return true; } case OP_NAT_TO_REAL: { DECODE_A(instruction) i32 result = (i32)locals[src1] << 16; USED(src2); locals[dest] = result; return true; } case OP_NAT_TO_INT: { DECODE_A(instruction) i32 result = (i32)locals[src1]; USED(src2); locals[dest] = result; return true; } case OP_REAL_TO_INT: { DECODE_A(instruction) i32 result = (i32)locals[src1] >> 16; USED(src2); locals[dest] = result; return true; } case OP_REAL_TO_NAT: { DECODE_A(instruction) u32 result = (u32)locals[src1] >> 16; USED(src2); locals[dest] = result; return true; } case OP_BIT_SHIFT_LEFT: { MATH_OP_NO_CAST(<<); } case OP_BIT_SHIFT_RIGHT: { MATH_OP_NO_CAST(>>); } case OP_BIT_SHIFT_R_EXT: { MATH_OP(i32, >>); } case OP_BIT_AND: { MATH_OP_NO_CAST(&); } case OP_BIT_OR: { MATH_OP_NO_CAST(|); } case OP_BIT_XOR: { MATH_OP_NO_CAST(^); } case OP_JMP_IMM: { u32 imm = (((u32)code[(pc) + 3] << 24) | ((u32)code[(pc) + 2] << 16) | ((u32)code[(pc) + 1] << 8) | ((u32)code[(pc)])); pc = imm; return true; } case OP_JMP_ABS: { DECODE_A(instruction) u32 jmp_dest = locals[dest]; if (jmp_dest > cp) { status = 1; return true; } USED(src1); USED(src2); pc = jmp_dest; return true; } case OP_JMP_OFF: { DECODE_A(instruction) u32 jmp_dest = locals[dest] + locals[src1]; if (jmp_dest > cp) { status = 1; return true; } USED(src2); pc = jmp_dest; return true; } case OP_JMP_FLAG: { DECODE_A(instruction) u32 mask; u32 jmp_dest = locals[dest]; if (jmp_dest > cp) { status = 1; return true; } USED(src1); USED(src2); mask = -(u32)(status == 0); pc = (jmp_dest & mask) | (pc & ~mask); return true; } case OP_JEQ_INT: { COMPARE_AND_JUMP(i32, ==); } case OP_JNE_INT: { COMPARE_AND_JUMP(i32, !=); } case OP_JGT_INT: { COMPARE_AND_JUMP(i32, >); } case OP_JLT_INT: { COMPARE_AND_JUMP(i32, <); } case OP_JLE_INT: { COMPARE_AND_JUMP(i32, <=); } case OP_JGE_INT: { COMPARE_AND_JUMP(i32, >=); } case OP_JEQ_NAT: { COMPARE_AND_JUMP(u32, ==); } case OP_JNE_NAT: { COMPARE_AND_JUMP(u32, !=); } case OP_JGT_NAT: { COMPARE_AND_JUMP(u32, >); } case OP_JLT_NAT: { COMPARE_AND_JUMP(u32, <); } case OP_JLE_NAT: { COMPARE_AND_JUMP(u32, <=); } case OP_JGE_NAT: { COMPARE_AND_JUMP(u32, >=); } case OP_JEQ_REAL: { COMPARE_AND_JUMP(i32, ==); } case OP_JNE_REAL: { COMPARE_AND_JUMP(i32, !=); } case OP_JGE_REAL: { COMPARE_AND_JUMP(i32, >=); } case OP_JGT_REAL: { COMPARE_AND_JUMP(i32, >); } case OP_JLT_REAL: { COMPARE_AND_JUMP(i32, <); } case OP_JLE_REAL: { COMPARE_AND_JUMP(i32, <=); } case OP_INT_TO_STR: { DECODE_A(instruction) u32 i = MAX_LEN_INT32; i32 v = (i32)locals[src1]; char buffer[MAX_LEN_INT32]; i32 n = v; bool neg = n < 0; USED(src2); if (neg) n = -n; do { buffer[--i] = radix_set[n % 10]; n /= 10; } while (n > 0); if (neg) buffer[--i] = '-'; /* Ensure at least one digit is written for 0 */ if (v == 0) buffer[--i] = '0'; /* Copy from buffer[i] to buffer + MAX_LEN_INT32 */ locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i); return pc; } case OP_NAT_TO_STR: { DECODE_A(instruction) u32 v = (i32)locals[src1]; char buffer[MAX_LEN_INT32]; u32 n = v; u32 i = MAX_LEN_INT32; USED(src2); do { buffer[--i] = radix_set[n % 10]; n /= 10; } while (n > 0); /* Ensure at least one digit is written for 0 */ if (v == 0) buffer[--i] = '0'; /* Copy from buffer[i] to buffer + MAX_LEN_INT32 */ locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i); return pc; } case OP_REAL_TO_STR: { DECODE_A(instruction) u32 i = 0, j = 0; i32 q = (i32)locals[src1]; char buffer[MAX_LEN_INT32]; u32 int_part, frac_part; if (q < 0) { buffer[i++] = '-'; q = -q; } int_part = q >> 16; frac_part = q & 0xFFFF; USED(src2); if (int_part == 0) { buffer[i++] = radix_set[0]; } else { char tmp[16]; i32 tmp_i = 0; while (int_part > 0) { tmp[tmp_i++] = radix_set[int_part % 10]; int_part /= 10; } while (tmp_i > 0) { buffer[i++] = tmp[--tmp_i]; } } buffer[i++] = '.'; for (j = 0; j < 6; j++) { frac_part *= 10; buffer[i++] = radix_set[frac_part >> 16]; frac_part &= 0xFFFF; } locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i); return pc; } } /* something went very wrong */ status = 255; return false; }