#include "vm.h" #define FRAME_HEADER_SIZE 12 u32 pc; /* program counter */ u32 cp; /* code pointer */ u32 mp; /* memory pointer */ u32 fp; /* frame pointer */ u32 sp; /* frame pointer */ u8 status; /* status flag */ u8 interrupt; /* device interrupt */ u32 *stack; /* stack */ u8 *code; /* code */ u8 *mem; /* memory */ #define MAX_LEN_INT32 11 #define MAX_INT32 2147483647 #define MIN_INT32 -2147483648 const char radix_set[11] = "0123456789"; u32 str_alloc(char *str, u32 length) { u32 str_addr = mp; u8 *ptr = &mem[mp]; mcpy(ptr, &length, sizeof(u32)); ptr += 4; mcpy(ptr, str, length); ptr[length] = '\0'; mp += 4 + length; return str_addr; } bool step_vm() { u8 opcode = code[pc++]; u32 *locals = (u32*)(&mem[fp]); u32 *globals = (u32*)(mem); switch (opcode) { case OP_HALT: { /* no need to decode, all are zeros */ return false; } case OP_CALL: { /* TODO: Fix this one so it makes sense with a stack based system */ /* function to jump to */ u32 fn_ptr = stack[--sp]; /* get mp in 'global indexing mode' */ u32 *header = &globals[mp / 4]; /* reset child locals counter */ lc = 0; /* push parents frame value to reset the heap to */ (*header++) = fp; /* increase the mp to new size */ mp += FRAME_HEADER_SIZE; /* now set the frame pointer, where the locals start */ fp = mp; /* move mp forward by count many locals */ mp += stack[--sp]; /* jump to dest_ptr */ pc = fn_ptr; return false; } case OP_RETURN: { /* TODO: Fix this one so it makes sense with a stack based system */ u32 i, size = 0; u32 return_value = stack[--sp]; bool is_ptr = (((u32)(1)) << 15) & return_value; /* reset mp to saved mp, use header size to get "real" start of frame */ u32 *frame_start = &globals[(fp / 4) - 3]; u32 parent_fp = *frame_start++; u32 return_address = *frame_start++; u32 parent_local_return_address = *frame_start++; /* reset memory to parents end of memory */ mp = fp - FRAME_HEADER_SIZE; /* reset the frame pointer */ fp = parent_fp; if (is_ptr) { /* copy value to end of mp if it is a pointer */ globals[parent_local_return_address/4] = mp; size = globals[return_value/4]; globals[mp/4] = size; mp += 4; mcpy(&mem[mp], &mem[return_value], size); mp += size; } else { /* otherwise just write the return value to its location */ mcpy(&mem[parent_local_return_address], &return_value, sizeof(u32)); } /* jump to parent frame */ pc = return_address; return false; } case OP_SYSCALL: { u32 id = stack[--sp]; /* syscall id */ u32 size = stack[--sp]; /* size of heap at that pointer */ u32 rd = stack[--sp]; /* the pointer */ status = syscall(id, size, rd); return true; } case OP_PUSH: { return false; } case OP_POP: { --sp; return true; } case OP_SET: { return false; } case OP_MEM_ALLOC: { u32 size = stack[--sp]; stack[sp++] = mp; WRITE_U32(mp, size); mp += (size + 4); return true; } case OP_MEM_CPY_8: { u32 i = 0; u32 count = stack[--sp]; u32 msrc = stack[--sp]; u32 mdest = stack[--sp]; if (mdest + count >= mp) { status = 1; return true; } for (i = 0; i < count; i++) { mem[msrc + i] = mem[mdest + i]; } status = 0; return true; } case OP_MEM_CPY_16: { u32 i = 0; u32 count = stack[--sp]; u32 msrc = stack[--sp]; u32 mdest = stack[--sp]; if (mdest + count >= mp) { status = 1; return true; } for (i = 0; i < count; i++) { u16 value = READ_U16(mdest + i); WRITE_U16(msrc + i, value); } status = 0; return true; } case OP_MEM_CPY_32: { u32 i = 0; u32 count = stack[--sp]; u32 msrc = stack[--sp]; u32 mdest = stack[--sp]; if (mdest + count >= mp) { status = 1; return true; } for (i = 0; i < count; i++) { globals[msrc + i] = globals[mdest + i]; } status = 0; return true; } case OP_MEM_SET_8: { u32 i, start, end; u8 value = (u8)stack[--sp]; u32 count = stack[--sp]; start = stack[--sp]; end = start + count; if (start >= mp || end > mp) { status = 1; return true; } for (i = start; i < end; i++) { mem[i] = value; } status = 0; return true; } case OP_MEM_SET_16: { u32 i, start, end; u8 value = (u8)stack[--sp]; u32 count = stack[--sp]; start = stack[--sp]; end = start + count; if (start >= mp || end > mp) { status = 1; return true; } for (i = start; i < end; i += 2) { WRITE_U16(i, value); } status = 0; return true; } case OP_MEM_SET_32: { u32 i, start, end; u8 value = (u8)stack[--sp]; u32 count = stack[--sp]; start = stack[--sp]; end = start + count; if (start >= mp || end > mp) { status = 1; return true; } for (i = start; i < end; i += 4) { WRITE_U32(i, value); } status = 0; return true; } case OP_DUP: { u32 a = stack[--sp]; stack[sp++] = a; stack[sp++] = a; return true; } case OP_EXCH: { u32 a = stack[--sp]; u32 b = stack[--sp]; stack[sp++] = b; stack[sp++] = a; return true; } case OP_OVER: { u32 a = stack[sp - 1]; stack[sp++] = a; return true; } case OP_PICK: { u32 n = stack[--sp]; u32 b = stack[sp - n]; stack[sp++] = b; return true; } case OP_ROT: { return false; } case OP_DEPTH: { u32 a = sp; stack[sp++] = a; return true; } case OP_ADD_INT: { MATH_OP(i32, +); } case OP_SUB_INT: { MATH_OP(i32, -); } case OP_MUL_INT: { MATH_OP(i32, *); } case OP_DIV_INT: { MATH_OP(i32, /); } case OP_ADD_NAT: { MATH_OP(u32, +); } case OP_SUB_NAT: { MATH_OP(u32, -); } case OP_MUL_NAT: { MATH_OP(u32, *); } case OP_DIV_NAT: { MATH_OP(u32, /); } case OP_ADD_REAL: { MATH_OP(i32, +); } case OP_SUB_REAL: { MATH_OP(i32, -); } case OP_MUL_REAL: { i32 src1 = (i32)stack[--sp]; i32 src2 = (i32)stack[--sp]; i32 src1_whole = src1 >> 16; i32 src2_whole = src2 >> 16; i32 src1_decimal = src1 & 16; i32 src2_decimal = src2 & 16; i32 result = 0; result += (src1_whole * src2_whole) << 16; result += (src1_whole * src2_decimal); result += (src1_decimal * src2_whole); result += ((src1_decimal * src2_decimal) >> 16) & 16; stack[sp++] = result; return true; } case OP_DIV_REAL: { i32 result; i32 src1_val = (i32)stack[--sp]; i32 src2_val = (i32)stack[--sp]; u32 src2_reciprocal = 1; src2_reciprocal <<= 31; src2_reciprocal = (u32)(src2_reciprocal / src2_val); result = src1_val * src2_reciprocal; result <<= 1; stack[sp++] = result; return true; } case OP_INT_TO_REAL: { i32 result = (i32)stack[--sp] << 16; stack[sp++] = result; return true; } case OP_INT_TO_NAT: { u32 result = (u32)stack[--sp]; stack[sp++] = result; return true; } case OP_NAT_TO_REAL: { i32 result = (i32)stack[--sp] << 16; stack[sp++] = result; return true; } case OP_NAT_TO_INT: { i32 result = (i32)stack[--sp]; stack[sp++] = result; return true; } case OP_REAL_TO_INT: { i32 result = (i32)stack[--sp] >> 16; stack[sp++] = result; return true; } case OP_REAL_TO_NAT: { u32 result = (u32)stack[--sp] >> 16; stack[sp++] = result; return true; } case OP_BIT_SHIFT_LEFT: { MATH_OP_NO_CAST(<<); } case OP_BIT_SHIFT_RIGHT: { MATH_OP_NO_CAST(>>); } case OP_BIT_SHIFT_R_EXT: { MATH_OP(i32, >>); } case OP_BIT_AND: { MATH_OP_NO_CAST(&); } case OP_BIT_OR: { MATH_OP_NO_CAST(|); } case OP_BIT_XOR: { MATH_OP_NO_CAST(^); } case OP_JMP: { u32 jmp_dest = stack[--sp]; if (jmp_dest > cp) { status = 1; return true; } pc = jmp_dest; return true; } case OP_JMP_FLAG: { u32 mask; u32 jmp_dest = stack[--sp]; if (jmp_dest > cp) { status = 1; return true; } mask = -(u32)(status == 0); pc = (jmp_dest & mask) | (pc & ~mask); return true; } case OP_JEQ_INT: { COMPARE_AND_JUMP(i32, ==); } case OP_JNE_INT: { COMPARE_AND_JUMP(i32, !=); } case OP_JGT_INT: { COMPARE_AND_JUMP(i32, >); } case OP_JLT_INT: { COMPARE_AND_JUMP(i32, <); } case OP_JLE_INT: { COMPARE_AND_JUMP(i32, <=); } case OP_JGE_INT: { COMPARE_AND_JUMP(i32, >=); } case OP_JEQ_NAT: { COMPARE_AND_JUMP(u32, ==); } case OP_JNE_NAT: { COMPARE_AND_JUMP(u32, !=); } case OP_JGT_NAT: { COMPARE_AND_JUMP(u32, >); } case OP_JLT_NAT: { COMPARE_AND_JUMP(u32, <); } case OP_JLE_NAT: { COMPARE_AND_JUMP(u32, <=); } case OP_JGE_NAT: { COMPARE_AND_JUMP(u32, >=); } case OP_JEQ_REAL: { COMPARE_AND_JUMP(i32, ==); } case OP_JNE_REAL: { COMPARE_AND_JUMP(i32, !=); } case OP_JGE_REAL: { COMPARE_AND_JUMP(i32, >=); } case OP_JGT_REAL: { COMPARE_AND_JUMP(i32, >); } case OP_JLT_REAL: { COMPARE_AND_JUMP(i32, <); } case OP_JLE_REAL: { COMPARE_AND_JUMP(i32, <=); } case OP_INT_TO_STR: { u32 i = MAX_LEN_INT32; i32 v = (i32)stack[--sp]; char buffer[MAX_LEN_INT32]; i32 n = v; bool neg = n < 0; if (neg) n = -n; do { buffer[--i] = radix_set[n % 10]; n /= 10; } while (n > 0); if (neg) buffer[--i] = '-'; /* Ensure at least one digit is written for 0 */ if (v == 0) buffer[--i] = '0'; /* Copy from buffer[i] to buffer + MAX_LEN_INT32 */ stack[sp++] = str_alloc(buffer + i, MAX_LEN_INT32 - i); return pc; } case OP_NAT_TO_STR: { u32 v = (i32)stack[--sp]; char buffer[MAX_LEN_INT32]; u32 n = v; u32 i = MAX_LEN_INT32; do { buffer[--i] = radix_set[n % 10]; n /= 10; } while (n > 0); /* Ensure at least one digit is written for 0 */ if (v == 0) buffer[--i] = '0'; /* Copy from buffer[i] to buffer + MAX_LEN_INT32 */ stack[sp++] = str_alloc(buffer + i, MAX_LEN_INT32 - i); return pc; } case OP_REAL_TO_STR: { u32 i = 0, j = 0; i32 q = (i32)stack[--sp]; char buffer[MAX_LEN_INT32]; u32 int_part, frac_part; if (q < 0) { buffer[i++] = '-'; q = -q; } int_part = q >> 16; frac_part = q & 0xFFFF; if (int_part == 0) { buffer[i++] = radix_set[0]; } else { char tmp[16]; i32 tmp_i = 0; while (int_part > 0) { tmp[tmp_i++] = radix_set[int_part % 10]; int_part /= 10; } while (tmp_i > 0) { buffer[i++] = tmp[--tmp_i]; } } buffer[i++] = '.'; for (j = 0; j < 6; j++) { frac_part *= 10; buffer[i++] = radix_set[frac_part >> 16]; frac_part &= 0xFFFF; } stack[sp++] = str_alloc(buffer + i, MAX_LEN_INT32 - i); return pc; } } /* something went very wrong */ status = 255; return false; }