Compare commits

..

3 Commits

Author SHA1 Message Date
zongor 1191dd7476 dont accidentally use these until they are done 2026-01-19 21:56:42 -08:00
zongor 9f8575e5a2 WIP more stack ops 2026-01-19 21:54:12 -08:00
zongor 1b77649e36 wip stack based 2026-01-19 21:24:41 -08:00
18 changed files with 720 additions and 1514 deletions

View File

@ -4,7 +4,7 @@
#define CODE_SIZE 8192 #define CODE_SIZE 8192
#define MEMORY_SIZE 65536 #define MEMORY_SIZE 65536
u8 lmem[MEMORY_SIZE] = {0}; u8 lmem[MEMORY_SIZE] = {0};
u32 lcode[CODE_SIZE] = {0}; u8 lcode[CODE_SIZE] = {0};
bool init_vm() { bool init_vm() {
mem = lmem; mem = lmem;
@ -50,76 +50,22 @@ u32 syscall(u32 id, u32 size, u32 mem_ptr) {
} }
void test_add_two_num() { void test_add_two_num() {
i32 main_local_count = 5; code[cp++] = OP_GET;
mp += (4 * main_local_count); code[cp++] = OP_GET;
code[cp++] = ENCODE_B(OP_LOAD_IMM, 0, 1); code[cp++] = OP_GET;
code[cp++] = ENCODE_B(OP_PUSH, 0, 0); code[cp++] = OP_CALL;
code[cp++] = ENCODE_B(OP_LOAD_IMM, 1, 1); code[cp++] = OP_INT_TO_STR;
code[cp++] = ENCODE_B(OP_PUSH, 1, 0); code[cp++] = OP_SYSCALL;
i32 add = cp + 5; code[cp++] = OP_HALT;
code[cp++] = ENCODE_B(OP_LOAD_IMM, 2, add);
code[cp++] = ENCODE_A(OP_CALL, 2, 3, 0);
code[cp++] = ENCODE_A(OP_INT_TO_STR, 4, 3, 0);
code[cp++] = ENCODE_A(OP_SYSCALL, SYSCALL_CONSOLE_WRITE, 1, 4);
code[cp++] = ENCODE_A(OP_HALT, 0, 0, 0);
/* add */ /* add */
code[cp++] = ENCODE_A(OP_ADD_INT, 2, 1, 0); code[cp++] = OP_ADD_INT;
code[cp++] = ENCODE_B(OP_RETURN, 2, 0); code[cp++] = OP_RETURN;
}
void test_fibonacci() {
i32 fib = 7;
i32 base_case = 21;
/* function main() */
i32 main_local_count = 4;
mp += (4 * main_local_count);
/* fib(35) */
code[cp++] = ENCODE_B(OP_LOAD_IMM, 0, 35);
code[cp++] = ENCODE_B(OP_PUSH, 0, 0);
code[cp++] = ENCODE_B(OP_LOAD_IMM, 1, fib);
code[cp++] = ENCODE_A(OP_CALL, 1, 9, 2);
/* print */
code[cp++] = ENCODE_A(OP_INT_TO_STR, 3, 2, 0);
code[cp++] = ENCODE_A(OP_SYSCALL, SYSCALL_CONSOLE_WRITE, 1, 3);
code[cp++] = ENCODE_A(OP_HALT, 0, 0, 0);
/* function fib (int n) int */
code[cp++] = ENCODE_B(OP_LOAD_IMM, 8, fib);
code[cp++] = ENCODE_B(OP_LOAD_IMM, 1, 2);
code[cp++] = ENCODE_B(OP_LOAD_IMM, 2, base_case);
code[cp++] = ENCODE_A(OP_JLT_INT, 2, 0, 1);
code[cp++] = ENCODE_B(OP_LOAD_IMM, 3, 2);
code[cp++] = ENCODE_A(OP_SUB_INT, 4, 0, 3);
code[cp++] = ENCODE_B(OP_PUSH, 4, 0);
code[cp++] = ENCODE_A(OP_CALL, 8, 9, 5);
code[cp++] = ENCODE_B(OP_LOAD_IMM, 3, 1);
code[cp++] = ENCODE_A(OP_SUB_INT, 4, 0, 3);
code[cp++] = ENCODE_B(OP_PUSH, 4, 0);
code[cp++] = ENCODE_A(OP_CALL, 8, 9, 6);
code[cp++] = ENCODE_A(OP_ADD_INT, 7, 6, 5);
code[cp++] = ENCODE_B(OP_RETURN, 7, 0);
code[cp++] = ENCODE_B(OP_RETURN, 0, 0);
}
void test_hello() {
u32 hello =str_alloc("nuqneH 'u'?", 12);
u32 new_line = str_alloc("\n", 1);
fp = mp;
/* function main() */
i32 main_local_count = 3;
mp += (4 * main_local_count);
code[cp++] = ENCODE_B(OP_LOAD_IMM, 0, hello);
code[cp++] = ENCODE_A(OP_SYSCALL, SYSCALL_CONSOLE_WRITE, 0, 0);
code[cp++] = ENCODE_B(OP_LOAD_IMM, 0, new_line);
code[cp++] = ENCODE_A(OP_SYSCALL, SYSCALL_CONSOLE_WRITE, 0, 0);
code[cp++] = ENCODE_A(OP_HALT, 0, 0, 0);
} }
i32 main() { i32 main() {
init_vm(); init_vm();
test_hello(); test_add_two_num();
while(step_vm()) { while(step_vm()) {
// do stuff // do stuff

2
build
View File

@ -69,7 +69,7 @@ case $MODE in
BUILD_FLAGS="-g -Wall -Wextra -Werror -pedantic" BUILD_FLAGS="-g -Wall -Wextra -Werror -pedantic"
;; ;;
"release") "release")
BUILD_FLAGS="-Ofast -Wall -Wextra -Werror -pedantic" BUILD_FLAGS="-O2 -Wall -Wextra -Werror -pedantic"
;; ;;
esac esac

View File

@ -1,29 +0,0 @@
/**
* Plexes
*/
plex Terminal {
nat handle;
}
/**
* Main function
*/
function main() {
pln(add(1, 1) as str);
}
/**
* Add two numbers together
*/
function add(int a, int b) int {
return a + b;
}
/**
* Print with a newline
*/
function pln(str message) {
Terminal term = open("/dev/term/0", 0);
term.write(message);
term.write("\n");
}

View File

@ -1,30 +0,0 @@
/**
* Plexes
*/
plex Terminal {
nat handle;
}
/**
* Main function
*/
function main() {
pln(fib(35) as str);
}
/**
* Recursively calculate fibonacci
*/
function fib(int n) int {
if (n < 2) return n;
return fib(n - 2) + fib(n - 1);
}
/**
* Print with a newline
*/
function pln(str message) {
Terminal term = open("/dev/term/0", 0);
term.write(message);
term.write("\n");
}

View File

@ -1,22 +0,0 @@
/**
* Plexes
*/
plex Terminal {
nat handle;
}
/**
* Main function
*/
function main() {
pln("nuqneH 'u'?");
}
/**
* Print with a newline
*/
function pln(str message) {
Terminal term = open("/dev/term/0", 0);
term.write(message);
term.write("\n");
}

View File

@ -1,26 +0,0 @@
/**
* Plexes
*/
plex Terminal {
nat handle;
}
/**
* Main function
*/
function main() {
Terminal term = open("/dev/term/0", 0);
pln("Enter a string: ");
pln(term.read(32) as str);
return 0;
}
/**
* Print with a newline
*/
function pln(str message) {
Terminal term = open("/dev/term/0", 0);
term.write(message);
term.write("\n");
}

View File

@ -1,108 +0,0 @@
/**
* Constants
*/
const byte BLACK = 0;
const byte WHITE = 255;
const byte DARK_GRAY = 73;
const byte GRAY = 146;
const byte LIGHT_GRAY = 182;
byte selected_color = 255;
trait Device {
nat handle;
}
plex Screen implements Device {
nat handle;
nat width;
nat height;
byte[] buffer;
draw() {
this.write(this.buffer);
}
}
plex Mouse implements Device {
nat handle;
nat x;
nat y;
bool left;
bool right;
bool middle;
bool btn4;
}
/**
* Main function
*/
function main() {
Screen screen = open("/dev/screen/0", 0);
Mouse mouse = open("/dev/mouse/0", 0);
outline_swatch(screen, BLACK, 1, 1);
outline_swatch(screen, WHITE, 21, 1);
screen.draw();
loop {
if (!mouse.left) continue;
int box_size = 20;
int x = 1;
int y = 1;
byte color = BLACK;
outlined_swatch(screen, color, x, y);
set_color(box_size, x, y, mouse.x, mouse.y, color);
color = WHITE;
x = 21;
outlined_swatch(screen, color, x, y);
set_color(box_size, x, y, mouse.x, mouse.y, color);
screen.draw();
rectangle(screen, selected_color, x, y, 5, 5);
}
exit(0);
}
/**
* Checks if the click is within the bound and update the selected color if so.
*/
function set_color(int box_size, int bx, int by, int mx, int my, byte color) {
int right = bx + box_size;
int bottom = by + box_size;
if (mx < bx) return;
if (mx > right) return;
if (my < by) return;
if (my > bottom) return;
selected_color = color;
}
/**
* Draw a color box with a grey outline, if selected use a darker color
*/
function outline_swatch(Device screen, byte color, int x, int y) {
byte bg_color = GRAY;
if (selected_color == color) {
bg_color = DARK_GRAY;
}
rectangle(screen, bg_color, x, y, 20, 20);
rectangle(screen, color, x + 2, y + 2, 17, 17);
}
/**
* Draw a rectangle
*/
function rectangle(Device screen, byte color, int x, int y, int width, int height) {
int base = y * screen.width + x + screen.buffer.ptr + 4;
do (int i = height; i > 0; i--) {
int row = base + width;
memset(screen.buffer, row, color, width);
base += screen.width;
}
}

View File

@ -1,25 +0,0 @@
/**
* Constants
*/
const str nl = "\n";
plex Terminal {
nat handle;
}
/**
* Main function
*/
function main() {
pln((1.0 + 1.0) as str);
exit(0);
}
/**
* Print with a newline
*/
function pln(str message) {
Terminal term = open("/dev/term/0", 0);
write(term, message, message.length);
write(term, nl, nl.length);
}

View File

@ -1,72 +0,0 @@
/**
* Constants
*/
const str screen_namespace = "/dev/screen/0"
const str mouse_namespace = "/dev/mouse/0"
const str terminal_namespace = "/dev/term/0"
const str new_line = "\n"
const byte WHITE = 255
/**
* Devices
*/
plex Terminal {
nat handle;
}
plex Screen {
nat handle;
nat width;
nat height;
byte[] buffer;
draw() {
write(this, this.buffer, this.buffer_size);
}
}
plex Mouse {
nat handle;
nat x;
nat y;
bool left;
bool right;
bool middle;
bool btn4;
nat size;
}
/**
* Main function
*/
function main() {
Screen screen = open(screen_namespace, 0);
pln(screen.handle as str);
pln(screen.width as str);
pln(screen.size as str);
unsafe {
pln(screen.screen_buffer.ptr as str);
}
Mouse mouse = open(mouse_namespace, 0);
screen.draw();
loop {
if (mouse.left) {
unsafe {
screen.buffer[mouse.y * width + mouse.x +
screen.buffer.ptr + 4] = WHITE;
screen.draw();
}
}
}
}
/**
* Print with a newline
*/
function pln(str message) {
Terminal term = open(terminal_namespace, 0);
write(term, message, message.length);
write(term, nl, nl.length);
}

View File

@ -0,0 +1,7 @@
#include "assembler.h"
/**
* Emit bytecode to the VM from the source string.
*/
void assemble(char *source, ScopeTable *st) {
}

View File

@ -0,0 +1,55 @@
#ifndef UNDAR_IR_ASSEMBLER_H
#define UNDAR_IR_ASSEMBLER_H
#include "../../vm/libc.h"
#include "lexer.h"
typedef enum { GLOBAL, LOCAL, VAR } ScopeType;
typedef enum {
VOID,
BOOL,
I8,
I16,
I32,
U8,
U16,
U32,
F8,
F16,
F32,
STR,
PLEX,
ARRAY,
FUNCTION
} SymbolType;
typedef struct symbol_s Symbol;
typedef struct symbol_tab_s SymbolTable;
typedef struct scope_tab_s ScopeTable;
#define MAX_SYMBOL_NAME_LENGTH 64
struct symbol_s {
char name[MAX_SYMBOL_NAME_LENGTH];
u8 name_length;
SymbolType type;
ScopeType scope;
u32 ref; // vm->mp if global, vm->pc local, register if var
u32 size; // size of symbol
};
struct symbol_tab_s {
Symbol symbols[256];
u8 count;
i32 parent;
};
struct scope_tab_s {
SymbolTable *scopes;
u32 count;
u32 capacity;
i32 scope_ref;
};
void assemble(char *source, ScopeTable *st);
#endif

401
tools/assembler/lexer.c Normal file
View File

@ -0,0 +1,401 @@
#include <string.h>
#include "../../vm/libc.h"
#include "lexer.h"
typedef struct {
const char *start;
const char *current;
i32 line;
} Lexer;
Lexer lexer;
void init_lexer(const char *source) {
lexer.start = source;
lexer.current = source;
lexer.line = 1;
}
static bool is_alpha(char c) {
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_';
}
static bool is_digit(char c) { return c >= '0' && c <= '9'; }
static bool is_at_end() { return *lexer.current == '\0'; }
static char advance() {
lexer.current++;
return lexer.current[-1];
}
static char peek() { return *lexer.current; }
static char peek_next() {
if (is_at_end())
return '\0';
return lexer.current[1];
}
static bool match(char expected) {
if (is_at_end())
return false;
if (*lexer.current != expected)
return false;
lexer.current++;
return true;
}
static Token make_token(TokenType type) {
Token token;
token.type = type;
token.start = lexer.start;
token.length = (i32)(lexer.current - lexer.start);
token.line = lexer.line;
return token;
}
static Token error_token(const char *message) {
Token token;
token.type = TOKEN_ERROR;
token.start = message;
token.length = (i32)strlen(message);
token.line = lexer.line;
return token;
}
static void skip_whitespace() {
for (;;) {
char c = peek();
switch (c) {
case ' ':
case '\r':
case '\t':
advance();
break;
case '\n':
lexer.line++;
advance();
break;
case '/':
if (peek_next() == '/') {
// Single-line comment: skip until newline or end of file
advance();
while (peek() != '\n' && !is_at_end())
advance();
} else if (peek_next() == '*') {
// Multi-line comment: skip until '*/' or end of file
advance();
advance();
while (!is_at_end()) {
if (peek() == '\n')
lexer.line++;
if (peek() == '*' && peek_next() == '/') {
advance();
advance();
break; // Exit loop, comment ended
}
advance();
}
} else {
return; // Not a comment, let tokenization handle it
}
break;
default:
return;
}
}
}
static TokenType check_keyword(i32 start, i32 length, const char *rest,
TokenType type) {
if (lexer.current - lexer.start == start + length &&
memcmp(lexer.start + start, rest, length) == 0) {
return type;
}
return TOKEN_IDENTIFIER;
}
static TokenType identifierType() {
switch (lexer.start[0]) {
case 'a':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'n':
return check_keyword(2, 1, "d", TOKEN_OPERATOR_AND);
case 's':
return check_keyword(2, 0, "", TOKEN_KEYWORD_AS);
}
}
break;
case 'c':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'l':
return check_keyword(2, 3, "ose", TOKEN_KEYWORD_CLOSE);
case 'o':
return check_keyword(2, 3, "nst", TOKEN_KEYWORD_CONST);
}
}
break;
case 'e':
return check_keyword(1, 3, "lse", TOKEN_KEYWORD_ELSE);
case 'f':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'a':
return check_keyword(2, 3, "lse", TOKEN_KEYWORD_FALSE);
case 'o':
return check_keyword(2, 1, "r", TOKEN_KEYWORD_FOR);
case '3':
return check_keyword(1, 1, "2", TOKEN_TYPE_REAL);
}
return check_keyword(1, 7, "unction", TOKEN_KEYWORD_FN);
}
break;
case 'i':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'f':
return check_keyword(2, 0, "", TOKEN_KEYWORD_IF);
case 's':
return check_keyword(2, 0, "", TOKEN_KEYWORD_IS);
case '8':
return check_keyword(2, 0, "", TOKEN_TYPE_I8);
case '1':
return check_keyword(2, 1, "6", TOKEN_TYPE_I16);
case '3':
return check_keyword(2, 1, "2", TOKEN_TYPE_INT);
case 'n':
if (lexer.current - lexer.start > 2) {
switch (lexer.start[2]) {
case 'i':
return check_keyword(3, 2, "t", TOKEN_KEYWORD_INIT);
case 't':
return check_keyword(3, 0, "", TOKEN_TYPE_INT);
}
}
break;
}
}
break;
case 'n':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'a':
return check_keyword(2, 1, "t", TOKEN_TYPE_NAT);
case 'i':
return check_keyword(2, 1, "l", TOKEN_KEYWORD_NIL);
}
}
break;
case 'o':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'p':
return check_keyword(2, 2, "en", TOKEN_KEYWORD_OPEN);
case 'r':
return check_keyword(2, 0, "", TOKEN_OPERATOR_OR);
}
}
break;
case 'p':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'l':
return check_keyword(2, 2, "ex", TOKEN_KEYWORD_PLEX);
}
}
break;
case 'r':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'e':
if (lexer.current - lexer.start > 2) {
switch (lexer.start[2]) {
case 'f':
return check_keyword(3, 4, "resh", TOKEN_KEYWORD_REFRESH);
case 't':
return check_keyword(3, 3, "urn", TOKEN_KEYWORD_RETURN);
case 'a':
if (lexer.current - lexer.start > 3) {
switch(lexer.start[3]) {
case 'd':
return check_keyword(4, 0, "", TOKEN_KEYWORD_READ);
case 'l':
return check_keyword(4, 0, "", TOKEN_TYPE_REAL);
}
}
}
}
break;
}
}
break;
case 's':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 't':
return check_keyword(2, 1, "r", TOKEN_TYPE_STR);
}
}
break;
case 't':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'h':
return check_keyword(2, 2, "is", TOKEN_KEYWORD_THIS);
case 'r':
return check_keyword(2, 2, "ue", TOKEN_KEYWORD_TRUE);
}
}
break;
case 'u':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 's':
return check_keyword(2, 1, "e", TOKEN_KEYWORD_USE);
case '8':
return check_keyword(2, 0, "", TOKEN_TYPE_U8);
case '1':
return check_keyword(2, 1, "6", TOKEN_TYPE_U16);
case '3':
return check_keyword(2, 1, "2", TOKEN_TYPE_NAT);
}
}
break;
case 'w':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'h':
return check_keyword(2, 3, "ile", TOKEN_KEYWORD_WHILE);
case 'r':
return check_keyword(2, 3, "ite", TOKEN_KEYWORD_WRITE);
}
}
break;
case 'b':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'y':
return check_keyword(2, 2, "te", TOKEN_TYPE_U8);
case 'o':
return check_keyword(2, 2, "ol", TOKEN_TYPE_U8);
}
}
break;
case 'g':
return check_keyword(1, 5, "lobal", TOKEN_KEYWORD_GLOBAL);
case 'l':
return check_keyword(1, 3, "oop", TOKEN_KEYWORD_LOOP);
case 'd':
return check_keyword(1, 1, "o", TOKEN_KEYWORD_DO);
case 'v':
return check_keyword(1, 3, "oid", TOKEN_TYPE_VOID);
}
return TOKEN_IDENTIFIER;
}
static Token identifier() {
while (is_alpha(peek()) || is_digit(peek()))
advance();
return make_token(identifierType());
}
static Token number() {
while (is_digit(peek()))
advance();
/* Look for a fractional part. */
if (peek() == '.' && is_digit(peek_next())) {
/* Consume the ".". */
advance();
while (is_digit(peek()))
advance();
return make_token(TOKEN_LITERAL_REAL);
}
return make_token(TOKEN_LITERAL_INT);
}
static Token string() {
while (peek() != '"' && !is_at_end()) {
if (peek() == '\n')
lexer.line++;
advance();
}
if (is_at_end())
return error_token("Unterminated string.");
/* The closing quote. */
advance();
return make_token(TOKEN_LITERAL_STR);
}
Token next_token() {
skip_whitespace();
lexer.start = lexer.current;
if (is_at_end())
return make_token(TOKEN_EOF);
char c = advance();
if (is_alpha(c))
return identifier();
char next = peek();
if ((c == '-' && is_digit(next)) || is_digit(c))
return number();
switch (c) {
case '(':
return make_token(TOKEN_LPAREN);
case ')':
return make_token(TOKEN_RPAREN);
case '{':
return make_token(TOKEN_LBRACE);
case '}':
return make_token(TOKEN_RBRACE);
case '[':
return make_token(TOKEN_LBRACKET);
case ']':
return make_token(TOKEN_RBRACKET);
case ';':
return make_token(TOKEN_SEMICOLON);
case ',':
return make_token(TOKEN_COMMA);
case '.':
return make_token(TOKEN_DOT);
case '-':
return make_token(match('>') ? TOKEN_ARROW_RIGHT : TOKEN_MINUS);
case '+':
return make_token(TOKEN_PLUS);
case '/':
return make_token(TOKEN_SLASH);
case '&':
return make_token(match('&') ? TOKEN_AND_AND : TOKEN_AND);
case '#':
return make_token(TOKEN_MESH);
case '$':
return make_token(TOKEN_BIG_MONEY);
case '*':
return make_token(TOKEN_STAR);
case '!':
return make_token(match('=') ? TOKEN_BANG_EQ : TOKEN_BANG);
case '=':
return make_token(match('=') ? TOKEN_EQ_EQ : TOKEN_EQ);
case '<':
return make_token(match('=') ? TOKEN_LTE : TOKEN_LT);
case '>':
return make_token(match('=') ? TOKEN_GTE : TOKEN_GT);
case '"':
return string();
}
return error_token("Unexpected character.");
}

View File

@ -1,8 +1,6 @@
#ifndef UNDAR_LEXER_H #ifndef UNDAR_LEXER_H
#define UNDAR_LEXER_H #define UNDAR_LEXER_H
#include "../vm/libc.h"
typedef enum { typedef enum {
TOKEN_EOF, TOKEN_EOF,
TOKEN_IDENTIFIER, TOKEN_IDENTIFIER,
@ -84,8 +82,7 @@ typedef struct {
int line; int line;
} Token; } Token;
void initLexer(const char *source); void init_lexer(const char *source);
Token next_token(); Token next_token();
const char* token_type_to_string(TokenType type);
#endif #endif

View File

@ -1,152 +0,0 @@
#include "parser.h"
#include "compiler.h"
#include <stdio.h>
#include <stdlib.h>
Symbol *symbol_table_lookup(ScopeTable *table, const char *name, u32 length,
i32 scope_ref) {
SymbolTable st = table->scopes[scope_ref];
for (u32 i = 0; i < st.count; i++) {
if (st.symbols[i].name_length == length) {
if (sleq(st.symbols[i].name, name, length)) {
return &table->scopes[scope_ref].symbols[i];
}
}
}
if (st.parent < 0)
return nil;
return symbol_table_lookup(table, name, length, st.parent);
}
u8 symbol_table_add(ScopeTable *table, Symbol s) {
Symbol *sym =
symbol_table_lookup(table, s.name, s.name_length, table->scope_ref);
if (sym != nil) {
fprintf(stderr,
"Error: Symbol '%.*s' already defined, in this scope"
" please pick a different variable name or create a new scope.\n",
s.name_length, s.name);
exit(1);
}
if (table->scopes[table->scope_ref].count + 1 > 255) {
fprintf(stderr, "Error: Only 255 symbols are allowed per scope"
" first off: impressive; secondly:"
" just create a new scope and keep going.\n");
exit(1);
}
if (!table_realloc(table)) {
fprintf(stderr,
"Error: Symbol table is out of memory! This is likely because you "
" built the assembler in static mode, increase the static size."
" if you built using malloc, that means your computer is out of"
" memory. Close a few tabs in your web browser and try again."
" Count was %d, while capacity was %d\n",
table->count, table->capacity);
exit(1);
}
table->scopes[table->scope_ref].symbols[table->scopes[table->scope_ref].count] = s;
u8 index = table->scopes[table->scope_ref].count;
table->scopes[table->scope_ref].count++;
return index;
}
u32 get_ref(ScopeTable *st, const char *name, u32 length) {
Symbol *sym = symbol_table_lookup(st, name, length, st->scope_ref);
if (!sym) {
fprintf(stderr, "Error: Assembler has no idea what Symbol '%.*s' means.\n",
length, name);
exit(1);
return 0;
}
return sym->ref;
}
u32 get_ptr(Token token, ScopeTable *st) {
if (token.type == TOKEN_IDENTIFIER) {
return get_ref(st, token.start, token.length);
}
if (token.type == TOKEN_LITERAL_INT) {
return atoi(token.start);
}
if (token.type == TOKEN_LITERAL_NAT) {
char *endptr;
u32 out = (u32)strtoul(token.start, &endptr, 10);
if (endptr == token.start || *endptr != '\0') {
fprintf(stderr, "Invalid decimal literal at line %d: %.*s\n", token.line,
token.length, token.start);
exit(1);
}
return out;
}
fprintf(stderr, "Error: Not a pointer or symbol at line %d: %.*s\n",
token.line, token.length, token.start);
exit(1);
}
u32 get_reg(Token token, ScopeTable *st) {
if (token.type == TOKEN_IDENTIFIER) {
return get_ref(st, token.start, token.length);
}
if (token.type == TOKEN_BIG_MONEY) {
token = next_token();
return atoi(token.start);
}
fprintf(stderr, "Error: Not a register or symbol at line %d: %.*s\n",
token.line, token.length, token.start);
exit(1);
}
Token next_id_or_reg() {
Token token = next_token();
if (token.type == TOKEN_IDENTIFIER) {
return token;
}
if (token.type == TOKEN_BIG_MONEY) {
token = next_token();
return token;
}
printf("Not an ID or register at line %d: %.*s\n", token.line, token.length,
token.start);
exit(1);
return token;
}
Token next_id_or_ptr() {
Token token = next_token();
if (token.type != TOKEN_IDENTIFIER && token.type != TOKEN_LITERAL_NAT &&
token.type != TOKEN_LITERAL_INT && token.type != TOKEN_LITERAL_REAL) {
printf("Not an ID or register at line %d: %.*s\n", token.line, token.length,
token.start);
exit(1);
}
return token;
}
Token next_token_is(TokenType type) {
Token token = next_token();
if (token.type != type) {
printf("ERROR at line %d: %.*s\n", token.line, token.length, token.start);
exit(1);
}
return token;
}
/**
* Compile.
*/
bool compile(ScopeTable *st, char *source) {
return false;
}

View File

@ -1,88 +0,0 @@
#ifndef UNDAR_COMPILER_H
#define UNDAR_COMPILER_H
#include "../vm/libc.h"
#include "../vm/vm.h"
typedef enum { GLOBAL, LOCAL, VAR } ScopeType;
typedef enum {
VOID,
BOOL,
I8,
I16,
I32,
U8,
U16,
U32,
F8,
F16,
F32,
STR,
PLEX,
ARRAY,
FUNCTION
} SymbolType;
typedef struct symbol_s Symbol;
typedef struct symbol_tab_s SymbolTable;
typedef struct value_type_s ValueType;
typedef struct plex_fields_tab_s PlexFieldsTable;
typedef struct plex_def_s PlexDef;
typedef struct plex_tab_s PlexTable;
typedef struct scope_s Scope;
typedef struct scope_tab_s ScopeTable;
struct value_type_s {
SymbolType type;
u32 name;
u32 size;
u32 table_ref; // if it is a heap object
};
struct plex_def_s {
u32 name;
u32 size;
u32 field_ref_start;
u32 field_count;
};
struct plex_fields_tab_s {
u32 *plex_refs;
ValueType *fields;
u32 count;
u32 capacity;
};
struct plex_tab_s {
PlexDef *symbols;
u32 count;
u32 capacity;
};
#define MAX_SYMBOL_NAME_LENGTH 64
struct symbol_s {
char name[MAX_SYMBOL_NAME_LENGTH];
u8 name_length;
SymbolType type;
ScopeType scope;
u32 ref; // vm->mp if global, vm->pc local, register if var
u32 size; // size of symbol
};
struct symbol_tab_s {
Symbol symbols[256];
u8 count;
i32 parent;
};
struct scope_tab_s {
SymbolTable *scopes;
u32 count;
u32 capacity;
i32 scope_ref;
};
bool compile(ScopeTable *st, char *source);
extern bool table_realloc(ScopeTable *table);/* implement this in arch/ not here */
#endif

View File

@ -1,507 +0,0 @@
#include "parser.h"
typedef struct {
const char *start;
const char *current;
int line;
} Lexer;
Lexer lexer;
void initLexer(const char *source) {
lexer.start = source;
lexer.current = source;
lexer.line = 1;
}
static bool isAlpha(char c) {
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_';
}
static bool isDigit(char c) { return c >= '0' && c <= '9'; }
static bool isAtEnd() { return *lexer.current == '\0'; }
static char advance() {
lexer.current++;
return lexer.current[-1];
}
static char peek() { return *lexer.current; }
static char peekNext() {
if (isAtEnd())
return '\0';
return lexer.current[1];
}
static bool match(char expected) {
if (isAtEnd())
return false;
if (*lexer.current != expected)
return false;
lexer.current++;
return true;
}
static Token makeToken(TokenType type) {
Token token;
token.type = type;
token.start = lexer.start;
token.length = (int)(lexer.current - lexer.start);
token.line = lexer.line;
return token;
}
static Token errorToken(const char *message) {
Token token;
token.type = TOKEN_ERROR;
token.start = message;
token.length = (int)slen(message);
token.line = lexer.line;
return token;
}
static void skipWhitespace() {
for (;;) {
char c = peek();
switch (c) {
case ' ':
case '\r':
case '\t':
advance();
break;
case '\n':
lexer.line++;
advance();
break;
case '/':
if (peekNext() == '/') {
// Single-line comment: skip until newline or end of file
advance();
while (peek() != '\n' && !isAtEnd())
advance();
} else if (peekNext() == '*') {
// Multi-line comment: skip until '*/' or end of file
advance();
advance();
while (!isAtEnd()) {
if (peek() == '\n')
lexer.line++;
if (peek() == '*' && peekNext() == '/') {
advance();
advance();
break; // Exit loop, comment ended
}
advance();
}
} else {
return; // Not a comment, let tokenization handle it
}
break;
default:
return;
}
}
}
static TokenType checkKeyword(int start, int length, const char *rest,
TokenType type) {
if (lexer.current - lexer.start == start + length &&
sleq(lexer.start + start, rest, length)) {
return type;
}
return TOKEN_IDENTIFIER;
}
static TokenType identifierType() {
switch (lexer.start[0]) {
case 'a':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'n':
return checkKeyword(2, 1, "d", TOKEN_OPERATOR_AND);
case 's':
return checkKeyword(2, 0, "", TOKEN_KEYWORD_AS);
}
}
break;
case 'c':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'l':
return checkKeyword(2, 3, "ose", TOKEN_KEYWORD_CLOSE);
case 'o':
return checkKeyword(2, 3, "nst", TOKEN_KEYWORD_CONST);
}
}
break;
case 'e':
return checkKeyword(1, 3, "lse", TOKEN_KEYWORD_ELSE);
case 'f':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'a':
return checkKeyword(2, 3, "lse", TOKEN_KEYWORD_FALSE);
case 'o':
return checkKeyword(2, 1, "r", TOKEN_KEYWORD_FOR);
case '3':
return checkKeyword(2, 1, "2", TOKEN_TYPE_REAL);
}
return checkKeyword(1, 7, "unction", TOKEN_KEYWORD_FN);
}
break;
case 'i':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'f':
return checkKeyword(2, 0, "", TOKEN_KEYWORD_IF);
case 's':
return checkKeyword(2, 0, "", TOKEN_KEYWORD_IS);
case '8':
return checkKeyword(2, 0, "", TOKEN_TYPE_I8);
case '1':
return checkKeyword(2, 1, "6", TOKEN_TYPE_I16);
case '3':
return checkKeyword(2, 1, "2", TOKEN_TYPE_INT);
case 'n':
if (lexer.current - lexer.start > 2) {
switch (lexer.start[2]) {
case 'i':
return checkKeyword(3, 2, "t", TOKEN_KEYWORD_INIT);
case 't':
return checkKeyword(3, 0, "", TOKEN_TYPE_INT);
}
}
break;
}
}
break;
case 'n':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'a':
return checkKeyword(2, 1, "t", TOKEN_TYPE_NAT);
case 'i':
return checkKeyword(2, 1, "l", TOKEN_KEYWORD_NIL);
}
}
break;
case 'o':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'p':
return checkKeyword(2, 2, "en", TOKEN_KEYWORD_OPEN);
case 'r':
return checkKeyword(2, 0, "", TOKEN_OPERATOR_OR);
}
}
break;
case 'p':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'l':
return checkKeyword(2, 2, "ex", TOKEN_KEYWORD_PLEX);
}
}
break;
case 'r':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'e':
if (lexer.current - lexer.start > 2) {
switch (lexer.start[2]) {
case 'a':
return checkKeyword(3, 1, "d", TOKEN_KEYWORD_READ);
case 'f':
return checkKeyword(3, 4, "resh", TOKEN_KEYWORD_REFRESH);
case 't':
return checkKeyword(3, 3, "urn", TOKEN_KEYWORD_RETURN);
}
}
break;
}
}
break;
case 's':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 't':
return checkKeyword(2, 1, "r", TOKEN_TYPE_STR);
}
}
break;
case 't':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'h':
return checkKeyword(2, 2, "is", TOKEN_KEYWORD_THIS);
case 'r':
return checkKeyword(2, 2, "ue", TOKEN_KEYWORD_TRUE);
}
}
break;
case 'u':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 's':
return checkKeyword(2, 1, "e", TOKEN_KEYWORD_USE);
case '8':
return checkKeyword(2, 0, "", TOKEN_TYPE_U8);
case '1':
return checkKeyword(2, 1, "6", TOKEN_TYPE_U16);
case '3':
return checkKeyword(2, 1, "2", TOKEN_TYPE_NAT);
}
}
break;
case 'w':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'h':
return checkKeyword(2, 3, "ile", TOKEN_KEYWORD_WHILE);
case 'r':
return checkKeyword(2, 3, "ite", TOKEN_KEYWORD_WRITE);
}
}
break;
case 'g':
return checkKeyword(1, 5, "lobal", TOKEN_KEYWORD_GLOBAL);
}
return TOKEN_IDENTIFIER;
}
static Token identifier() {
while (isAlpha(peek()) || isDigit(peek()))
advance();
return makeToken(identifierType());
}
static Token number() {
while (isDigit(peek()))
advance();
/* Look for a fractional part. */
if (peek() == '.' && isDigit(peekNext())) {
/* Consume the ".". */
advance();
while (isDigit(peek()))
advance();
return makeToken(TOKEN_LITERAL_REAL);
}
return makeToken(TOKEN_LITERAL_INT);
}
static Token string() {
while (peek() != '"' && !isAtEnd()) {
if (peek() == '\n')
lexer.line++;
advance();
}
if (isAtEnd())
return errorToken("Unterminated string.");
/* The closing quote. */
advance();
return makeToken(TOKEN_LITERAL_STR);
}
Token next_token() {
skipWhitespace();
lexer.start = lexer.current;
if (isAtEnd())
return makeToken(TOKEN_EOF);
char c = advance();
if (isAlpha(c))
return identifier();
if (isDigit(c))
return number();
switch (c) {
case '(':
return makeToken(TOKEN_LPAREN);
case ')':
return makeToken(TOKEN_RPAREN);
case '{':
return makeToken(TOKEN_LBRACE);
case '}':
return makeToken(TOKEN_RBRACE);
case '[':
return makeToken(TOKEN_LBRACKET);
case ']':
return makeToken(TOKEN_RBRACKET);
case ';':
return makeToken(TOKEN_SEMICOLON);
case ',':
return makeToken(TOKEN_COMMA);
case '.':
return makeToken(TOKEN_DOT);
case '-':
return makeToken(match('>') ? TOKEN_ARROW_RIGHT : TOKEN_MINUS);
case '+':
return makeToken(TOKEN_PLUS);
case '/':
return makeToken(TOKEN_SLASH);
case '&':
return makeToken(match('&') ? TOKEN_AND_AND : TOKEN_AND);
case '#':
return makeToken(TOKEN_MESH);
case '$':
return makeToken(TOKEN_BIG_MONEY);
case '*':
return makeToken(TOKEN_STAR);
case '!':
return makeToken(match('=') ? TOKEN_BANG_EQ : TOKEN_BANG);
case '=':
return makeToken(match('=') ? TOKEN_EQ_EQ : TOKEN_EQ);
case '<':
return makeToken(match('=') ? TOKEN_LTE : TOKEN_LT);
case '>':
return makeToken(match('=') ? TOKEN_GTE : TOKEN_GT);
case '"':
return string();
}
return errorToken("Unexpected character.");
}
const char *token_type_to_string(TokenType type) {
switch (type) {
case TOKEN_EOF:
return "EOF";
case TOKEN_IDENTIFIER:
return "IDENTIFIER";
case TOKEN_LITERAL_INT:
return "LITERAL_INT";
case TOKEN_LITERAL_NAT:
return "LITERAL_NAT";
case TOKEN_LITERAL_REAL:
return "LITERAL_REAL";
case TOKEN_LITERAL_STR:
return "LITERAL_STR";
case TOKEN_TYPE_INT:
return "TYPE_INT";
case TOKEN_TYPE_NAT:
return "TYPE_NAT";
case TOKEN_TYPE_REAL:
return "TYPE_REAL";
case TOKEN_TYPE_STR:
return "TYPE_STR";
case TOKEN_KEYWORD_PLEX:
return "KEYWORD_PLEX";
case TOKEN_KEYWORD_FN:
return "KEYWORD_FN";
case TOKEN_KEYWORD_CONST:
return "KEYWORD_CONST";
case TOKEN_KEYWORD_IF:
return "KEYWORD_IF";
case TOKEN_KEYWORD_IS:
return "IS";
case TOKEN_KEYWORD_AS:
return "AS";
case TOKEN_KEYWORD_ELSE:
return "KEYWORD_ELSE";
case TOKEN_KEYWORD_WHILE:
return "KEYWORD_WHILE";
case TOKEN_KEYWORD_FOR:
return "KEYWORD_FOR";
case TOKEN_KEYWORD_RETURN:
return "KEYWORD_RETURN";
case TOKEN_KEYWORD_USE:
return "KEYWORD_USE";
case TOKEN_KEYWORD_INIT:
return "KEYWORD_INIT";
case TOKEN_KEYWORD_THIS:
return "KEYWORD_THIS";
case TOKEN_KEYWORD_OPEN:
return "TOKEN_KEYWORD_OPEN";
case TOKEN_KEYWORD_READ:
return "TOKEN_KEYWORD_READ";
case TOKEN_KEYWORD_WRITE:
return "TOKEN_KEYWORD_WRITE";
case TOKEN_KEYWORD_REFRESH:
return "TOKEN_KEYWORD_REFRESH";
case TOKEN_KEYWORD_CLOSE:
return "TOKEN_KEYWORD_CLOSE";
case TOKEN_KEYWORD_NIL:
return "KEYWORD_NIL";
case TOKEN_KEYWORD_TRUE:
return "KEYWORD_TRUE";
case TOKEN_KEYWORD_FALSE:
return "KEYWORD_FALSE";
case TOKEN_KEYWORD_GLOBAL:
return "KEYWORD_GLOBAL";
case TOKEN_OPERATOR_NOT:
return "OPERATOR_NOT";
case TOKEN_OPERATOR_AND:
return "OPERATOR_AND";
case TOKEN_OPERATOR_OR:
return "OPERATOR_OR";
case TOKEN_BANG:
return "BANG";
case TOKEN_BANG_EQ:
return "BANG_EQ";
case TOKEN_EQ:
return "EQ";
case TOKEN_EQ_EQ:
return "EQ_EQ";
case TOKEN_GT:
return "GT";
case TOKEN_LT:
return "LT";
case TOKEN_GTE:
return "GTE";
case TOKEN_LTE:
return "LTE";
case TOKEN_DOT:
return "DOT";
case TOKEN_COMMA:
return "COMMA";
case TOKEN_COLON:
return "COLON";
case TOKEN_SEMICOLON:
return "SEMICOLON";
case TOKEN_PLUS:
return "PLUS";
case TOKEN_MINUS:
return "MINUS";
case TOKEN_STAR:
return "STAR";
case TOKEN_SLASH:
return "SLASH";
case TOKEN_LPAREN:
return "LPAREN";
case TOKEN_RPAREN:
return "RPAREN";
case TOKEN_LBRACE:
return "LBRACE";
case TOKEN_RBRACE:
return "RBRACE";
case TOKEN_LBRACKET:
return "LBRACKET";
case TOKEN_RBRACKET:
return "RBRACKET";
case TOKEN_ARROW_RIGHT:
return "ARROW_RIGHT";
case TOKEN_MESH:
return "MESH";
case TOKEN_BIG_MONEY:
return "BIG_MONEY";
case TOKEN_AND:
return "AND";
case TOKEN_AND_AND:
return "AND_AND";
case TOKEN_ERROR:
return "ERROR";
default:
return "UNKNOWN_TOKEN";
}
}

401
vm/vm.c
View File

@ -1,15 +1,16 @@
#include "vm.h" #include "vm.h"
#define FRAME_HEADER_SIZE 12 #define FRAME_HEADER_SIZE 12
u32 pc; /* program counter */ u32 pc; /* program counter */
u32 cp; /* code pointer */ u32 cp; /* code pointer */
u32 mp; /* memory pointer */ u32 mp; /* memory pointer */
u32 fp; /* frame pointer */ u32 fp; /* frame pointer */
u8 lc; /* child local count */ u32 sp; /* frame pointer */
u8 status; /* status flag */ u8 status; /* status flag */
u8 interrupt; /* device interrupt */ u8 interrupt; /* device interrupt */
u32 *code; /* code */ u32 *stack; /* stack */
u8 *mem; /* memory */ u8 *code; /* code */
u8 *mem; /* memory */
#define MAX_LEN_INT32 11 #define MAX_LEN_INT32 11
#define MAX_INT32 2147483647 #define MAX_INT32 2147483647
@ -28,8 +29,8 @@ u32 str_alloc(char *str, u32 length) {
} }
bool step_vm() { bool step_vm() {
u32 instruction = code[pc++];
u8 opcode = DECODE_OP(instruction); u8 opcode = code[pc++];
u32 *locals = (u32*)(&mem[fp]); u32 *locals = (u32*)(&mem[fp]);
u32 *globals = (u32*)(mem); u32 *globals = (u32*)(mem);
@ -39,35 +40,30 @@ bool step_vm() {
return false; return false;
} }
case OP_CALL: { case OP_CALL: {
DECODE_A(instruction) /* TODO: Fix this one so it makes sense with a stack based system */
/* function to jump to */ /* function to jump to */
u32 fn_ptr = locals[dest]; u32 fn_ptr = stack[--sp];
/* get mp in 'global indexing mode' */ /* get mp in 'global indexing mode' */
u32 *header = &globals[mp / 4]; u32 *header = &globals[mp / 4];
/* reset child locals counter */ /* reset child locals counter */
lc = 0; lc = 0;
/* push parents frame value to reset the heap to */ /* push parents frame value to reset the heap to */
(*header++) = fp; (*header++) = fp;
/* push return address to child frame */
(*header++) = pc;
/* push local address to return the value to */
(*header++) = fp + (src2 * 4);
/* increase the mp to new size */ /* increase the mp to new size */
mp += FRAME_HEADER_SIZE; mp += FRAME_HEADER_SIZE;
/* now set the frame pointer, where the locals start */ /* now set the frame pointer, where the locals start */
fp = mp; fp = mp;
/* move mp forward by count many locals */ /* move mp forward by count many locals */
mp += (src1 * 4); mp += stack[--sp];
/* jump to dest_ptr */ /* jump to dest_ptr */
pc = fn_ptr; pc = fn_ptr;
return true; return false;
} }
case OP_RETURN: { case OP_RETURN: {
DECODE_B(instruction) /* TODO: Fix this one so it makes sense with a stack based system */
u32 size = 0; u32 i, size = 0;
u32 return_value = locals[dest]; u32 return_value = stack[--sp];
bool is_ptr = (((u32)(1)) << 15) & imm; bool is_ptr = (((u32)(1)) << 15) & return_value;
bool replaces_value = (((u32)(1)) << 14) & imm;
/* reset mp to saved mp, use header size to get "real" start of frame */ /* reset mp to saved mp, use header size to get "real" start of frame */
u32 *frame_start = &globals[(fp / 4) - 3]; u32 *frame_start = &globals[(fp / 4) - 3];
@ -75,7 +71,6 @@ bool step_vm() {
u32 return_address = *frame_start++; u32 return_address = *frame_start++;
u32 parent_local_return_address = *frame_start++; u32 parent_local_return_address = *frame_start++;
USED(replaces_value);
/* reset memory to parents end of memory */ /* reset memory to parents end of memory */
mp = fp - FRAME_HEADER_SIZE; mp = fp - FRAME_HEADER_SIZE;
/* reset the frame pointer */ /* reset the frame pointer */
@ -91,248 +86,181 @@ bool step_vm() {
mp += size; mp += size;
} else { } else {
/* otherwise just write the return value to its location */ /* otherwise just write the return value to its location */
globals[(parent_local_return_address / 4)] = return_value; mcpy(&mem[parent_local_return_address], &return_value, sizeof(u32));
} }
/* jump to parent frame */ /* jump to parent frame */
pc = return_address; pc = return_address;
return true; return false;
} }
case OP_SYSCALL: { case OP_SYSCALL: {
DECODE_A(instruction) u32 id = stack[--sp]; /* syscall id */
u32 id = dest; /* syscall id */ u32 size = stack[--sp]; /* size of heap at that pointer */
u32 size = src1; /* size of heap at that pointer */ u32 rd = stack[--sp]; /* the pointer */
u32 rd = locals[src2]; /* the pointer */
status = syscall(id, size, rd); status = syscall(id, size, rd);
return true; return true;
} }
case OP_PUSH: { case OP_PUSH: {
DECODE_B(instruction) return false;
USED(imm);
globals[(mp / 4) + lc + 3] = locals[dest];
lc++;
return true;
} }
case OP_POP: { case OP_POP: {
DECODE_B(instruction) --sp;
USED(dest);
USED(imm);
mp -= 4;
lc--;
return true; return true;
} }
case OP_LOAD_IMM: { case OP_SET: {
DECODE_B(instruction) return false;
locals[dest] = imm;
return true;
}
case OP_LOAD_UPPER_IMM: {
DECODE_B(instruction)
u32 value = locals[dest];
locals[dest] = (value | (((u32)(imm)) << 16));
return true;
}
case OP_LOAD_IND_8: {
DECODE_A(instruction)
USED(src2);
locals[dest] = READ_U8(locals[src1]);
return true;
}
case OP_LOAD_IND_16: {
DECODE_A(instruction)
USED(src2);
locals[dest] = READ_U16(locals[src1]);
return true;
}
case OP_LOAD_IND_32: {
DECODE_A(instruction)
USED(src2);
locals[dest] = READ_U32(locals[src1]);
return true;
}
case OP_LOAD_OFF_8: {
DECODE_A(instruction)
locals[dest] = READ_U8((locals[src1] + locals[src2]));
return true;
}
case OP_LOAD_OFF_16: {
DECODE_A(instruction)
locals[dest] = READ_U16((locals[src1] + locals[src2]));
return true;
}
case OP_LOAD_OFF_32: {
DECODE_A(instruction)
locals[dest] = READ_U32((locals[src1] + locals[src2]));
return true;
}
case OP_STORE_IND_8: {
DECODE_A(instruction)
USED(src2);
WRITE_U8(locals[dest], locals[src1]);
return true;
}
case OP_STORE_IND_16: {
DECODE_A(instruction)
USED(src2);
WRITE_U16(locals[dest], locals[src1]);
return true;
}
case OP_STORE_IND_32: {
DECODE_A(instruction)
USED(src2);
WRITE_U32(locals[dest], locals[src1]);
return true;
}
case OP_STORE_OFF_8: {
DECODE_A(instruction)
WRITE_U8((locals[dest] + locals[src2]), locals[src1]);
return true;
}
case OP_STORE_OFF_16: {
DECODE_A(instruction)
WRITE_U16((locals[dest] + locals[src2]), locals[src1]);
return true;
}
case OP_STORE_OFF_32: {
DECODE_A(instruction)
WRITE_U32((locals[dest] + locals[src2]), locals[src1]);
return true;
} }
case OP_MEM_ALLOC: { case OP_MEM_ALLOC: {
DECODE_A(instruction) u32 size = stack[--sp];
u32 size = locals[src1]; stack[sp++] = mp;
locals[dest] = mp;
WRITE_U32(mp, size); WRITE_U32(mp, size);
USED(src2);
mp += (size + 4); mp += (size + 4);
return true; return true;
} }
case OP_MEM_CPY_8: { case OP_MEM_CPY_8: {
DECODE_A(instruction) u32 i = 0;
u32 count = stack[--sp];
u8 *ptr_src; u32 msrc = stack[--sp];
u8 *ptr_dest; u32 mdest = stack[--sp];
u32 mdest = locals[dest];
u32 msrc = locals[src1];
u32 count = locals[src2];
if (mdest + count >= mp) { if (mdest + count >= mp) {
status = 1; status = 1;
return true; return true;
} }
ptr_dest = &mem[mdest]; for (i = 0; i < count; i++) {
ptr_src = &mem[msrc]; mem[msrc + i] = mem[mdest + i];
mcpy(ptr_dest, ptr_src, count*sizeof(u8)); }
status = 0; status = 0;
return true; return true;
} }
case OP_MEM_CPY_16: { case OP_MEM_CPY_16: {
DECODE_A(instruction) u32 i = 0;
u32 count = stack[--sp];
u8 *ptr_src; u32 msrc = stack[--sp];
u8 *ptr_dest; u32 mdest = stack[--sp];
u32 mdest = locals[dest];
u32 msrc = locals[src1];
u32 count = locals[src2];
if (mdest + count >= mp) { if (mdest + count >= mp) {
status = 1; status = 1;
return true; return true;
} }
ptr_dest = &mem[mdest]; for (i = 0; i < count; i++) {
ptr_src = &mem[msrc]; u16 value = READ_U16(mdest + i);
mcpy(ptr_dest, ptr_src, count*sizeof(u16)); WRITE_U16(msrc + i, value);
}
status = 0; status = 0;
return true; return true;
} }
case OP_MEM_CPY_32: { case OP_MEM_CPY_32: {
DECODE_A(instruction) u32 i = 0;
u32 count = stack[--sp];
u8 *ptr_src; u32 msrc = stack[--sp];
u8 *ptr_dest; u32 mdest = stack[--sp];
u32 mdest = locals[dest];
u32 msrc = locals[src1];
u32 count = locals[src2];
if (mdest + count >= mp) { if (mdest + count >= mp) {
status = 1; status = 1;
return true; return true;
} }
ptr_dest = &mem[mdest]; for (i = 0; i < count; i++) {
ptr_src = &mem[msrc]; globals[msrc + i] = globals[mdest + i];
mcpy(ptr_dest, ptr_src, count*sizeof(u32)); }
status = 0; status = 0;
return true; return true;
} }
case OP_MEM_SET_8: { case OP_MEM_SET_8: {
DECODE_A(instruction) u32 i, start, end;
u8 value = (u8)stack[--sp];
u32 count = stack[--sp];
start = stack[--sp];
end = start + count;
u8 *ptr_dest; if (start >= mp || end > mp) {
u8 value = (u8)locals[src1];
u32 count = locals[src2];
u32 mdest = locals[dest];
if (mdest + count >= mp) {
status = 1; status = 1;
return true; return true;
} }
ptr_dest = &mem[mdest]; for (i = start; i < end; i++) {
mcpy(ptr_dest, &value, count*sizeof(u8)); mem[i] = value;
}
status = 0; status = 0;
return true; return true;
} }
case OP_MEM_SET_16: { case OP_MEM_SET_16: {
DECODE_A(instruction) u32 i, start, end;
u8 value = (u8)stack[--sp];
u32 count = stack[--sp];
start = stack[--sp];
end = start + count;
u8 *ptr_dest; if (start >= mp || end > mp) {
u16 value = (u16)locals[src1];
u32 count = locals[src2];
u32 mdest = locals[dest];
if (mdest + count >= mp) {
status = 1; status = 1;
return true; return true;
} }
ptr_dest = &mem[mdest]; for (i = start; i < end; i += 2) {
mcpy(ptr_dest, &value, count*sizeof(u16)); WRITE_U16(i, value);
}
status = 0; status = 0;
return true; return true;
} }
case OP_MEM_SET_32: { case OP_MEM_SET_32: {
DECODE_A(instruction) u32 i, start, end;
u8 value = (u8)stack[--sp];
u32 count = stack[--sp];
start = stack[--sp];
end = start + count;
u8 *ptr_dest; if (start >= mp || end > mp) {
u32 value = locals[src1];
u32 count = locals[src2];
u32 mdest = locals[dest];
if (mdest + count >= mp) {
status = 1; status = 1;
return true; return true;
} }
ptr_dest = &mem[mdest]; for (i = start; i < end; i += 4) {
mcpy(ptr_dest, &value, count*sizeof(u32)); WRITE_U32(i, value);
}
status = 0; status = 0;
return true; return true;
} }
case OP_MOV: { case OP_DUP: {
DECODE_A(instruction) u32 a = stack[--sp];
USED(src2); stack[sp++] = a;
locals[dest] = locals[src1]; stack[sp++] = a;
return true; return true;
} }
case OP_EXCH: {
u32 a = stack[--sp];
u32 b = stack[--sp];
stack[sp++] = b;
stack[sp++] = a;
return true;
}
case OP_OVER: {
u32 a = stack[sp - 1];
stack[sp++] = a;
return true;
}
case OP_PICK: {
u32 n = stack[--sp];
u32 b = stack[sp - n];
stack[sp++] = b;
return true;
}
case OP_ROT: {
return false;
}
case OP_DEPTH: {
u32 a = sp;
stack[sp++] = a;
return true;
}
case OP_ADD_INT: { case OP_ADD_INT: {
MATH_OP(i32, +); MATH_OP(i32, +);
} }
@ -364,27 +292,27 @@ bool step_vm() {
MATH_OP(i32, -); MATH_OP(i32, -);
} }
case OP_MUL_REAL: { case OP_MUL_REAL: {
DECODE_A(instruction) i32 src1 = (i32)stack[--sp];
i32 src2 = (i32)stack[--sp];
i32 src1_whole = (i32)locals[src1] >> 16; i32 src1_whole = src1 >> 16;
i32 src2_whole = (i32)locals[src2] >> 16; i32 src2_whole = src2 >> 16;
i32 src1_decimal = (i32)locals[src1] & 16; i32 src1_decimal = src1 & 16;
i32 src2_decimal = (i32)locals[src2] & 16; i32 src2_decimal = src2 & 16;
i32 result = 0; i32 result = 0;
result += (src1_whole * src2_whole) << 16; result += (src1_whole * src2_whole) << 16;
result += (src1_whole * src2_decimal); result += (src1_whole * src2_decimal);
result += (src1_decimal * src2_whole); result += (src1_decimal * src2_whole);
result += ((src1_decimal * src2_decimal) >> 16) & 16; result += ((src1_decimal * src2_decimal) >> 16) & 16;
locals[dest] = result; stack[sp++] = result;
return true; return true;
} }
case OP_DIV_REAL: { case OP_DIV_REAL: {
DECODE_A(instruction)
i32 result; i32 result;
i32 src1_val = (i32)locals[src1]; i32 src1_val = (i32)stack[--sp];
i32 src2_val = (i32)locals[src2]; i32 src2_val = (i32)stack[--sp];
u32 src2_reciprocal = 1; u32 src2_reciprocal = 1;
src2_reciprocal <<= 31; src2_reciprocal <<= 31;
@ -393,49 +321,37 @@ bool step_vm() {
result = src1_val * src2_reciprocal; result = src1_val * src2_reciprocal;
result <<= 1; result <<= 1;
locals[dest] = result; stack[sp++] = result;
return true; return true;
} }
case OP_INT_TO_REAL: { case OP_INT_TO_REAL: {
DECODE_A(instruction) i32 result = (i32)stack[--sp] << 16;
i32 result = (i32)locals[src1] << 16; stack[sp++] = result;
USED(src2);
locals[dest] = result;
return true; return true;
} }
case OP_INT_TO_NAT: { case OP_INT_TO_NAT: {
DECODE_A(instruction) u32 result = (u32)stack[--sp];
u32 result = (u32)locals[src1]; stack[sp++] = result;
USED(src2);
locals[dest] = result;
return true; return true;
} }
case OP_NAT_TO_REAL: { case OP_NAT_TO_REAL: {
DECODE_A(instruction) i32 result = (i32)stack[--sp] << 16;
i32 result = (i32)locals[src1] << 16; stack[sp++] = result;
USED(src2);
locals[dest] = result;
return true; return true;
} }
case OP_NAT_TO_INT: { case OP_NAT_TO_INT: {
DECODE_A(instruction) i32 result = (i32)stack[--sp];
i32 result = (i32)locals[src1]; stack[sp++] = result;
USED(src2);
locals[dest] = result;
return true; return true;
} }
case OP_REAL_TO_INT: { case OP_REAL_TO_INT: {
DECODE_A(instruction) i32 result = (i32)stack[--sp] >> 16;
i32 result = (i32)locals[src1] >> 16; stack[sp++] = result;
USED(src2);
locals[dest] = result;
return true; return true;
} }
case OP_REAL_TO_NAT: { case OP_REAL_TO_NAT: {
DECODE_A(instruction) u32 result = (u32)stack[--sp] >> 16;
u32 result = (u32)locals[src1] >> 16; stack[sp++] = result;
USED(src2);
locals[dest] = result;
return true; return true;
} }
case OP_BIT_SHIFT_LEFT: { case OP_BIT_SHIFT_LEFT: {
@ -456,46 +372,23 @@ bool step_vm() {
case OP_BIT_XOR: { case OP_BIT_XOR: {
MATH_OP_NO_CAST(^); MATH_OP_NO_CAST(^);
} }
case OP_JMP_IMM: { case OP_JMP: {
DECODE_C(instruction) u32 jmp_dest = stack[--sp];
pc = imm;
return true;
}
case OP_JMP_ABS: {
DECODE_A(instruction)
u32 jmp_dest = locals[dest];
if (jmp_dest > cp) { if (jmp_dest > cp) {
status = 1; status = 1;
return true; return true;
} }
USED(src1);
USED(src2);
pc = jmp_dest;
return true;
}
case OP_JMP_OFF: {
DECODE_A(instruction)
u32 jmp_dest = locals[dest] + locals[src1];
if (jmp_dest > cp) {
status = 1;
return true;
}
USED(src2);
pc = jmp_dest; pc = jmp_dest;
return true; return true;
} }
case OP_JMP_FLAG: { case OP_JMP_FLAG: {
DECODE_A(instruction)
u32 mask; u32 mask;
u32 jmp_dest = locals[dest]; u32 jmp_dest = stack[--sp];
if (jmp_dest > cp) { if (jmp_dest > cp) {
status = 1; status = 1;
return true; return true;
} }
USED(src1);
USED(src2);
mask = -(u32)(status == 0); mask = -(u32)(status == 0);
pc = (jmp_dest & mask) | (pc & ~mask); pc = (jmp_dest & mask) | (pc & ~mask);
@ -556,15 +449,12 @@ bool step_vm() {
COMPARE_AND_JUMP(i32, <=); COMPARE_AND_JUMP(i32, <=);
} }
case OP_INT_TO_STR: { case OP_INT_TO_STR: {
DECODE_A(instruction)
u32 i = MAX_LEN_INT32; u32 i = MAX_LEN_INT32;
i32 v = (i32)locals[src1]; i32 v = (i32)stack[--sp];
char buffer[MAX_LEN_INT32]; char buffer[MAX_LEN_INT32];
i32 n = v; i32 n = v;
bool neg = n < 0; bool neg = n < 0;
USED(src2);
if (neg) if (neg)
n = -n; n = -n;
@ -579,18 +469,16 @@ bool step_vm() {
buffer[--i] = '0'; buffer[--i] = '0';
/* Copy from buffer[i] to buffer + MAX_LEN_INT32 */ /* Copy from buffer[i] to buffer + MAX_LEN_INT32 */
locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i); stack[sp++] = str_alloc(buffer + i, MAX_LEN_INT32 - i);
return pc; return pc;
} }
case OP_NAT_TO_STR: { case OP_NAT_TO_STR: {
DECODE_A(instruction) u32 v = (i32)stack[--sp];
u32 v = (i32)locals[src1];
char buffer[MAX_LEN_INT32]; char buffer[MAX_LEN_INT32];
u32 n = v; u32 n = v;
u32 i = MAX_LEN_INT32; u32 i = MAX_LEN_INT32;
USED(src2);
do { do {
buffer[--i] = radix_set[n % 10]; buffer[--i] = radix_set[n % 10];
n /= 10; n /= 10;
@ -599,15 +487,13 @@ bool step_vm() {
if (v == 0) if (v == 0)
buffer[--i] = '0'; buffer[--i] = '0';
/* Copy from buffer[i] to buffer + MAX_LEN_INT32 */ /* Copy from buffer[i] to buffer + MAX_LEN_INT32 */
locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i); stack[sp++] = str_alloc(buffer + i, MAX_LEN_INT32 - i);
return pc; return pc;
} }
case OP_REAL_TO_STR: { case OP_REAL_TO_STR: {
DECODE_A(instruction)
u32 i = 0, j = 0; u32 i = 0, j = 0;
i32 q = (i32)locals[src1]; i32 q = (i32)stack[--sp];
char buffer[MAX_LEN_INT32]; char buffer[MAX_LEN_INT32];
u32 int_part, frac_part; u32 int_part, frac_part;
@ -618,7 +504,6 @@ bool step_vm() {
int_part = q >> 16; int_part = q >> 16;
frac_part = q & 0xFFFF; frac_part = q & 0xFFFF;
USED(src2);
if (int_part == 0) { if (int_part == 0) {
buffer[i++] = radix_set[0]; buffer[i++] = radix_set[0];
@ -641,7 +526,7 @@ bool step_vm() {
frac_part &= 0xFFFF; frac_part &= 0xFFFF;
} }
locals[dest] = str_alloc(buffer + i, MAX_LEN_INT32 - i); stack[sp++] = str_alloc(buffer + i, MAX_LEN_INT32 - i);
return pc; return pc;
} }

228
vm/vm.h
View File

@ -3,115 +3,84 @@
#include "libc.h" #include "libc.h"
/**
* Instruction Types
*
* A : [8:opcode][8:dest][8:src1][8:src2]
* B : [8:opcode][8:dest][16:immediate]
* C : [8:opcode][24:immediate]
*/
#define DECODE_OP(instruction) ((((u32)(instruction)) >> 24) & 0xFF)
#define ENCODE_A(opcode, dest, src1, src2) ((((u32)(opcode) & 0xFF) << 24) | \
(((u32)(dest) & 0xFF) << 16) | \
(((u32)(src1) & 0xFF) << 8) | \
(((u32)(src2) & 0xFF)))
#define DECODE_A(instruction) \
u8 dest = (((u32)(instruction)) >> 16) & 0xFF; \
u8 src1 = (((u32)(instruction)) >> 8) & 0xFF; \
u8 src2 = ((u32)(instruction)) & 0xFF;
#define ENCODE_B(opcode, dest, imm) ((((u32)(opcode) & 0xFF) << 24) | \
(((u32)(dest) & 0xFF) << 16) | \
(((u32)(imm)) & 0xFFFF))
#define DECODE_B(instruction) \
u8 dest = (((u32)(instruction)) >> 16) & 0xFF; \
u16 imm = ((u32)(instruction)) & 0xFFFF;
#define ENCODE_C(opcode, imm) ((((u32)(opcode) & 0xFF) << 24) | \
(((u32)(imm)) & 0xFFFFFF))
#define DECODE_C(instruction) \
u32 imm = ((u32)(instruction)) & 0xFFFFFF;
typedef enum { typedef enum {
OP_HALT, /* halt : A : all zeros : halt execution */ OP_HALT, /* - `halt` | halt execution */
OP_CALL, /* call : A : dest args return : creates a new frame */ OP_CALL, /* ptr `call` | creates a new frame */
OP_RETURN, /* return : B : dest return_flags: returns from a frame to the parent frame */ OP_RETURN, /* - `return` | returns from a frame to the parent frame */
OP_SYSCALL, /* syscall : A : id args mem_ptr : does a system call based on id with args */ OP_SYSCALL, /* id args mem_ptr `syscall` - | id args mem_ptr : does a system call based on id with args */
OP_LOAD_IMM, /* load_immediate : B : locals[dest] = const as u16 */ OP_LOAD_8, /* &dest `load-8` u8 | push memory[obj1] onto stack as u8 */
OP_LOAD_UPPER_IMM, /* load_upper_immediate : B : locals[dest] = const as u32 << 16 | u16 */ OP_LOAD_16, /* &dest `load-16` u16 | push memory[obj1] onto stack as u16 */
OP_LOAD_IND_8, /* load_indirect_8 : A : locals[dest] = memory[locals[src1]] as u8 */ OP_LOAD_32, /* &dest `load` u32 | push memory[obj1] onto stack as u32 */
OP_LOAD_IND_16, /* load_indirect_16 : A : locals[dest] = memory[locals[src1]] as u16 */ OP_STORE_8, /* &dest obj1 `store-8` - | memory[dest] = obj1 << 8 */
OP_LOAD_IND_32, /* load_indirect_32 : A : locals[dest] = memory[locals[src1]] as u32 */ OP_STORE_16, /* &dest obj1 `store-16`- | memory[dest] = obj1 << 16 */
OP_LOAD_OFF_8, /* load_offset_8 : A : locals[dest] = memory[locals[src1] + locals[src2]] as u8 */ OP_STORE_32, /* &dest obj1 `store` - | memory[dest] = obj1 */
OP_LOAD_OFF_16, /* load_offset_16 : A : locals[dest] = memory[locals[src1] + locals[src2]] as u16 */ OP_MALLOC, /* size `malloc` ptr | allocate 'size + 4' of memory and push ptr to memory on stack */
OP_LOAD_OFF_32, /* load_offset_32 : A : locals[dest] = memory[locals[src1] + locals[src2]] as u32 */ OP_PUSH, /* &local `get` obj1 | get the value from the local slot */
OP_STORE_IND_8, /* store_indirect_8 : A : memory[locals[dest]] = locals[src1] && 0xFF */ OP_POP, /* - `pop` - | removes top item from the stack */
OP_STORE_IND_16, /* store_indirect_16 : A : memory[locals[dest]] = locals[src1] && 0xFFFF*/ OP_SET, /* obj1 &local `set` - | set the value of the local slot */
OP_STORE_IND_32, /* store_indirect_32 : A : memory[locals[dest]] = locals[src1] */ OP_DUP, /* obj1 `dup` obj1 obj1 | duplicates the top of the stack */
OP_STORE_OFF_8, /* store_offset_8 : A : memory[locals[dest] + locals[src2]] = locals[src1] && 0xFF */ OP_EXCH, /* obj2 obj1 `exch` obj1 obj2 | swaps the top two values on the stack */
OP_STORE_OFF_16, /* store_offset_16 : A : memory[locals[dest] + locals[src2]] = locals[src1] && 0xFFFF */ OP_OVER, /* obj2 obj1 `over` obj2 | copys the 2nd to the top element and pushes to the stack */
OP_STORE_OFF_32, /* store_offset_32 : A : memory[locals[dest] + locals[src2]] = locals[src1] */ OP_PICK, /* N `pick` objN | gets the nth element on the stack and pushes it on top */
OP_MEM_ALLOC, /* alloc : A : memory[dest] = [locals[src1] as size + 4] */ OP_ROT, /* obj3 obj2 obj1 `rot` obj2 obj1 obj3 | takes the 3rd element and moves it to the top of the stack */
OP_MEM_CPY_8, /* memcpy_8 : A : memory[src1..src1+src2] = memory[dest..dest+src2] */ OP_DEPTH, /* - `depth` heap_count | pushes the number of elements on the stack to the stack*/
OP_MEM_CPY_16, /* memcpy_16 : A : memory[src1..src1+src2] = memory[dest..dest+src2] */ OP_MEM_ALLOC, /* size `alloc` ptr | allocate 'size + 4' of memory and push ptr to memory on stack */
OP_MEM_CPY_32, /* memcpy_32 : A : memory[src1..src1+src2] = memory[dest..dest+src2] */ OP_MEM_CPY_8, /* size src dest `memcpy_8` - | memory[src..src+size] = memory[dest..dest+size] */
OP_MEM_SET_8, /* memset_8 : A : memory[dest..dest+src2] = local[src1] as u8 */ OP_MEM_CPY_16, /* size src dest `memcpy_16` - | memory[src..src+size] = memory[dest..dest+size] */
OP_MEM_SET_16, /* memset_16 : A : memory[dest..dest+src2] = local[src1] as u16 */ OP_MEM_CPY_32, /* size src dest `memcpy_32` - | memory[src..src+size] = memory[dest..dest+size] */
OP_MEM_SET_32, /* memset_32 : A : memory[dest..dest+src2] = local[src1] as u32 */ OP_MEM_SET_8, /* size src dest `memset_8` - | memory[dest..dest+size] = local[src] as u8 */
OP_MOV, /* mov : A : locals[dest] = locals[src1] */ OP_MEM_SET_16, /* size src dest `memset_16` - | memory[dest..dest+size] = local[src] as u16 */
OP_PUSH, /* push : B : push u32 value onto the childs locals */ OP_MEM_SET_32, /* size src dest `memset_32` - | memory[dest..dest+size] = local[src] as u32 */
OP_POP, /* pop : C : pop u32 value off the stack (move MP back) */ OP_ADD_INT, /* obj2 obj1 `add_int` obj | obj1 + obj2 then push result on stack */
OP_ADD_INT, /* add_int : A : locals[dest] = locals[src1] + locals[src2] */ OP_SUB_INT, /* obj2 obj1 `sub_int` obj | obj1 - obj2 then push result on stack */
OP_SUB_INT, /* sub_int : A : locals[dest] = locals[src1] - locals[src2] */ OP_MUL_INT, /* obj2 obj1 `mul_int` obj | obj1 * obj2 then push result on stack */
OP_MUL_INT, /* mul_int : A : locals[dest] = locals[src1] * locals[src2] */ OP_DIV_INT, /* obj2 obj1 `div_int` obj | obj1 / obj2 then push result on stack */
OP_DIV_INT, /* div_int : A : locals[dest] = locals[src1] / locals[src2] */ OP_ADD_NAT, /* obj2 obj1 `add_nat` obj | obj1 + obj2 then push result on stack */
OP_ADD_NAT, /* add_nat : A : locals[dest] = locals[src1] + locals[src2] */ OP_SUB_NAT, /* obj2 obj1 `sub_nat` obj | obj1 - obj2 then push result on stack */
OP_SUB_NAT, /* sub_nat : A : locals[dest] = locals[src1] - locals[src2] */ OP_MUL_NAT, /* obj2 obj1 `mul_nat` obj | obj1 * obj2 then push result on stack */
OP_MUL_NAT, /* mul_nat : A : locals[dest] = locals[src1] * locals[src2] */ OP_DIV_NAT, /* obj2 obj1 `div_nat` obj | obj1 / obj2 then push result on stack */
OP_DIV_NAT, /* div_nat : A : locals[dest] = locals[src1] / locals[src2] */ OP_ADD_REAL, /* obj2 obj1 `add_real` obj | obj1 + obj2 then push result on stack */
OP_ADD_REAL, /* add_real : A : locals[dest] = locals[src1] + locals[src2] */ OP_SUB_REAL, /* obj2 obj1 `sub_real` obj | obj1 - obj2 then push result on stack */
OP_SUB_REAL, /* sub_real : A : locals[dest] = locals[src1] - locals[src2] */ OP_MUL_REAL, /* obj2 obj1 `mul_real` obj | obj1 * obj2 then push result on stack */
OP_MUL_REAL, /* mul_real : A : locals[dest] = locals[src1] * locals[src2] */ OP_DIV_REAL, /* obj2 obj1 `div_real` obj | obj1 / obj2 then push result on stack */
OP_DIV_REAL, /* div_real : A : locals[dest] = locals[src1] / locals[src2] */ OP_INT_TO_REAL, /* obj1 `int_to_real` obj1 as real | casts an int to a fixed number */
OP_INT_TO_REAL, /* int_to_real : A : locals[dest] = locals[src1] as real */ OP_INT_TO_NAT, /* obj1 `int_to_nat` obj1 as nat | casts an int to a unsigned int */
OP_INT_TO_NAT, /* int_to_nat : A : locals[dest] = locals[src1] as nat */ OP_NAT_TO_REAL, /* obj1 `nat_to_real` obj1 as real | casts a unsigned int to a fixed number */
OP_NAT_TO_REAL, /* nat_to_real : A : locals[dest] = locals[src1] as real */ OP_NAT_TO_INT, /* obj1 `nat_to_int` obj1 as int | casts a unsigned int to an int */
OP_NAT_TO_INT, /* nat_to_int : A : locals[dest] = locals[src1] as int */ OP_REAL_TO_INT, /* obj1 `real_to_int` obj1 as int | casts a fixed number to an int */
OP_REAL_TO_INT, /* real_to_int : A : locals[dest] = locals[src1] as int */ OP_REAL_TO_NAT, /* obj1 `real_to_nat` obj1 as nat | casts a fixed number to an unsigned int */
OP_REAL_TO_NAT, /* real_to_nat : A : locals[dest] = locals[src1] as nat */ OP_BIT_SHIFT_LEFT, /* obj2 obj1 `bit_shift_left` obj | src1] << locals[src2] */
OP_BIT_SHIFT_LEFT, /* bit_shift_left : A : locals[dest] = locals[src1] << locals[src2] */ OP_BIT_SHIFT_RIGHT,/* obj2 obj1 `bit_shift_right` obj | src1] >> locals[src2] */
OP_BIT_SHIFT_RIGHT,/* bit_shift_right : A : locals[dest] = locals[src1] >> locals[src2] */ OP_BIT_SHIFT_R_EXT,/* obj2 obj1 `bit_shift_r_ext` obj | src1 >> src2 then cast result as i32 */
OP_BIT_SHIFT_R_EXT,/* bit_shift_r_ext : A : locals[dest] as i32 = locals[src1] >> locals[src2] */ OP_BIT_AND, /* obj2 obj1 `bit_and` obj | obj1 & obj2 */
OP_BIT_AND, /* bit_and : A : locals[dest] = locals[src1] & locals[src2] */ OP_BIT_OR, /* obj2 obj1 `bit_or` obj | obj1 | obj2 */
OP_BIT_OR, /* bit_or : A : locals[dest] = locals[src1] | locals[src2] */ OP_BIT_XOR, /* obj2 obj1 `bit_xor` obj | obj1 ^ obj2 */
OP_BIT_XOR, /* bit_xor : A : locals[dest] = locals[src1] ^ locals[src2] */ OP_JMP, /* pc `jump` | jump unconditionally */
OP_JMP_IMM, /* jump_immediate : E : jump to imm unconditionally */ OP_JMP_FLAG, /* pc `jump_if_flag` | jump to pc if flag > 0 */
OP_JMP_ABS, /* jump_absolute : A : jump to locals[dest] unconditionally */ OP_JEQ_INT, /* obj2 obj1 pc `jump_eq_int` | jump to pc if obj1 as int == obj2 as int */
OP_JMP_OFF, /* jump_offset : A : jump to locals[dest] + locals[src1] unconditionally */ OP_JNE_INT, /* obj2 obj1 pc `jump_neq_int` | jump to pc if obj1 as int != obj2 as int */
OP_JMP_FLAG, /* jump_if_flag : A : jump to locals[dest] if flag > 0 */ OP_JGT_INT, /* obj2 obj1 pc `jump_gt_int` | jump to pc if obj1 as int > obj2 as int */
OP_JEQ_INT, /* jump_eq_int : A : jump to locals[dest] if locals[src1] as int == locals[src2] as int */ OP_JLT_INT, /* obj2 obj1 pc `jump_lt_int` | jump to pc if obj1 as int < obj2 as int */
OP_JNE_INT, /* jump_neq_int : A : jump to locals[dest] if locals[src1] as int != locals[src2] as int */ OP_JLE_INT, /* obj2 obj1 pc `jump_le_int` | jump to pc if obj1 as int <= obj2 as int */
OP_JGT_INT, /* jump_gt_int : A : jump to locals[dest] if locals[src1] as int > locals[src2] as int */ OP_JGE_INT, /* obj2 obj1 pc `jump_ge_int` | jump to pc if obj1 as int >= obj2 as int */
OP_JLT_INT, /* jump_lt_int : A : jump to locals[dest] if locals[src1] as int < locals[src2] as int */ OP_JEQ_NAT, /* obj2 obj1 pc `jump_eq_nat` | jump to pc if obj1 as nat == obj2 as nat */
OP_JLE_INT, /* jump_le_int : A : jump to locals[dest] if locals[src1] as int <= locals[src2] as int */ OP_JNE_NAT, /* obj2 obj1 pc `jump_neq_nat` | jump to pc if obj1 as nat != obj2 as nat */
OP_JGE_INT, /* jump_ge_int : A : jump to locals[dest] if locals[src1] as int >= locals[src2] as int */ OP_JGT_NAT, /* obj2 obj1 pc `jump_gt_nat` | jump to pc if obj1 as nat > obj2 as nat */
OP_JEQ_NAT, /* jump_eq_nat : A : jump to locals[dest] if locals[src1] as nat == locals[src2] as nat */ OP_JLT_NAT, /* obj2 obj1 pc `jump_lt_nat` | jump to pc if obj1 as nat < obj2 as nat */
OP_JNE_NAT, /* jump_neq_nat : A : jump to locals[dest] if locals[src1] as nat != locals[src2] as nat */ OP_JLE_NAT, /* obj2 obj1 pc `jump_le_nat` | jump to pc if obj1 as nat <= obj2 as nat */
OP_JGT_NAT, /* jump_gt_nat : A : jump to locals[dest] if locals[src1] as nat > locals[src2] as nat */ OP_JGE_NAT, /* obj2 obj1 pc `jump_ge_nat` | jump to pc if obj1 as nat >= obj2 as nat */
OP_JLT_NAT, /* jump_lt_nat : A : jump to locals[dest] if locals[src1] as nat < locals[src2] as nat */ OP_JEQ_REAL, /* obj2 obj1 pc `jump_eq_real` | jump to pc if obj1 as real == obj2 as real */
OP_JLE_NAT, /* jump_le_nat : A : jump to locals[dest] if locals[src1] as nat <= locals[src2] as nat */ OP_JNE_REAL, /* obj2 obj1 pc `jump_neq_real` | jump to pc if obj1 as real != obj2 as real */
OP_JGE_NAT, /* jump_ge_nat : A : jump to locals[dest] if locals[src1] as nat >= locals[src2] as nat */ OP_JGE_REAL, /* obj2 obj1 pc `jump_ge_real` | jump to pc if obj1 as real >= obj2 as real */
OP_JEQ_REAL, /* jump_eq_real : A : jump to locals[dest] if locals[src1] as real == locals[src2] as real */ OP_JGT_REAL, /* obj2 obj1 pc `jump_gt_real` | jump to pc if obj1 as real > obj2 as real */
OP_JNE_REAL, /* jump_neq_real : A : jump to locals[dest] if locals[src1] as real != locals[src2] as real */ OP_JLT_REAL, /* obj2 obj1 pc `jump_lt_real` | jump to pc if obj1 as real < obj2 as real */
OP_JGE_REAL, /* jump_ge_real : A : jump to locals[dest] if locals[src1] as real >= locals[src2] as real */ OP_JLE_REAL, /* obj2 obj1 pc `jump_le_real` | jump to pc if obj1 as real <= obj2 as real */
OP_JGT_REAL, /* jump_gt_real : A : jump to locals[dest] if locals[src1] as real > locals[src2] as real */ OP_INT_TO_STR, /* obj1 `int-to-string` str_ptr | convert obj1 to str */
OP_JLT_REAL, /* jump_lt_real : A : jump to locals[dest] if locals[src1] as real < locals[src2] as real */ OP_NAT_TO_STR, /* obj1 `nat-to-string` str_ptr | convert obj1 to str */
OP_JLE_REAL, /* jump_le_real : A : jump to locals[dest] if locals[src1] as real <= locals[src2] as real */ OP_REAL_TO_STR, /* obj1 `real-to-string` str_ptr | convert obj1 to str */
OP_INT_TO_STR, /* int_to_str : A : locals[dest] = &mem[mp..] locals[src1] as str */ OP_STR_TO_INT, /* str_ptr `string-to-int` obj | convert obj1 to int */
OP_NAT_TO_STR, /* nat_to_str : A : locals[dest] = &mem[mp..] locals[src1] as str */ OP_STR_TO_NAT, /* str_ptr `string-to-nat` obj | convert obj1 to nat */
OP_REAL_TO_STR, /* real_to_str : A : locals[dest] = &mem[mp..] locals[src1] as str */ OP_STR_TO_REAL, /* str_ptr `string-to-real` obj | convert obj1 to real */
OP_MAX_OPCODE /* not an opcode count of instructions */ OP_MAX_OPCODE /* not an opcode count of instructions */
} Opcode; } Opcode;
@ -125,10 +94,12 @@ extern u32 pc; /* program counter */
extern u32 cp; /* code pointer */ extern u32 cp; /* code pointer */
extern u32 mp; /* memory pointer */ extern u32 mp; /* memory pointer */
extern u32 fp; /* frame pointer */ extern u32 fp; /* frame pointer */
extern u32 sp; /* stack pointer */
extern u8 lc; /* child local count */ extern u8 lc; /* child local count */
extern u8 status; /* status flag */ extern u8 status; /* status flag */
extern u8 interrupt; /* device interrupt */ extern u8 interrupt; /* device interrupt */
extern u32 *code; /* code */ extern u32 *stack; /* stack */
extern u8 *code; /* code */
extern u8 *mem; /* memory */ extern u8 *mem; /* memory */
#define READ_U8(addr) (mem[addr]) #define READ_U8(addr) (mem[addr])
@ -160,31 +131,34 @@ extern u8 *mem; /* memory */
mem[addr + 3] = ((value) >> 24) & 0xFF; \ mem[addr + 3] = ((value) >> 24) & 0xFF; \
} while (0) } while (0)
#define COMPARE_AND_JUMP(type, op) \
do { \
i32 cond; \
u32 mask, target; \
type value; \
type value2; \
value2 = (type)stack[--sp]; \
value = (type)stack[--sp]; \
target = stack[--sp]; \
cond = !!(value op value2); \
mask = -(u32)cond; \
pc = (target & mask) | (pc & ~mask); \
return true; \
} while (0)
#define MATH_OP(type, op) \ #define MATH_OP(type, op) \
do { \ do { \
DECODE_A(instruction) \ type b = (type)stack[--sp]; \
locals[dest] = ((type)locals[src1] op (type)locals[src2]); \ type a = (type)stack[--sp]; \
stack[sp++] = (type)(a op b); \
return true; \ return true; \
} while (0) } while (0)
#define MATH_OP_NO_CAST(op) \ #define MATH_OP_NO_CAST(op) \
do { \ do { \
DECODE_A(instruction) \ u32 b = stack[--sp]; \
locals[dest] = (locals[src1] op locals[src2]); \ u32 a = stack[--sp]; \
return true; \ stack[sp++] = a op b; \
} while (0)
#define COMPARE_AND_JUMP(type, op) \
do { \
DECODE_A(instruction) \
i32 cond; \
u32 mask; \
u32 target = locals[dest]; \
type value = (type)locals[src1]; \
type value2 = (type)locals[src2]; \
cond = !!(value op value2); \
mask = -(u32)cond; \
pc = (target & mask) | (pc & ~mask); \
return true; \ return true; \
} while (0) } while (0)