#include "vm.h" #include "device.h" #include "opcodes.h" #include "str.h" #define COMPARE_AND_JUMP(type, op) \ do { \ i32 cond; \ u32 mask, target; \ u8 dest, src1, src2; \ type value; \ type value2; \ dest = read_u8(vm, code, vm->pc); \ vm->pc++; \ src1 = read_u8(vm, code, vm->pc); \ vm->pc++; \ src2 = read_u8(vm, code, vm->pc); \ vm->pc++; \ value = frame.registers[src1]; \ value2 = frame.registers[src2]; \ cond = !!(value op value2); \ mask = -(u32)cond; \ target = frame.registers[dest]; \ vm->pc = (target & mask) | (vm->pc & ~mask); \ return true; \ } while (0) #define MATH_OP(type, op) \ do { \ dest = read_u8(vm, code, vm->pc); \ vm->pc++; \ src1 = read_u8(vm, code, vm->pc); \ vm->pc++; \ src2 = read_u8(vm, code, vm->pc); \ vm->pc++; \ frame.registers[dest] = \ (type)frame.registers[src1] op(type) frame.registers[src2]; \ return true; \ } while (0) u32 str_alloc(VM *vm, Frame *frame, const char *str, u32 length) { u32 str_addr = vm->mp; u32 i = 0; vm->mp += 4; while (i < length) { vm->memory[vm->mp++] = str[i++]; } vm->memory[vm->mp++] = '\0'; write_u32(vm, memory, str_addr, length); frame->end = vm->mp; return str_addr; } /** * Step to the next opcode in the vm. */ bool step_vm(VM *vm) { u8 opcode, dest, src1, src2; u32 v, ptr; i32 value; Frame frame; /* Get current instruction & Advance to next instruction */ opcode = vm->code[vm->pc++]; frame = vm->frames[vm->fp]; switch (opcode) { case OP_HALT: { return false; } case OP_CALL: { u32 jmp = read_u32(vm, code, vm->pc); /* location of function in code */ vm->pc += 4; vm->return_stack[vm->rp++] = vm->pc; /* set return address */ vm->fp++; /* increment to the next free frame */ vm->frames[vm->fp].start = vm->mp; /* set start of new memory block */ vm->pc = jmp; return true; } case OP_RETURN: { frame.rp = 0; /* reset register ptr */ vm->pc = vm->return_stack[--vm->rp]; /* set pc to return address */ vm->mp = vm->frames[vm->fp--].start; /* reset memory pointer to start of old slice, pop the frame */ return true; } case OP_LOAD_IMM: { dest = read_u8(vm, code, vm->pc); vm->pc++; v = read_u32(vm, code, vm->pc); vm->pc += 4; frame.registers[dest] = v; return true; } case OP_LOAD: { dest = read_u8(vm, code, vm->pc); vm->pc++; ptr = read_u32(vm, code, vm->pc); vm->pc += 4; v = read_u32(vm, memory, ptr); frame.registers[dest] = v; return true; } case OP_STORE: { src1 = read_u8(vm, code, vm->pc); vm->pc++; ptr = read_u32(vm, code, vm->pc); vm->pc += 4; v = frame.registers[src1]; write_u32(vm, memory, ptr, v); return true; } case OP_PUSH: { dest = read_u8(vm, code, vm->pc); vm->pc++; vm->stack[++vm->sp] = frame.registers[dest]; return true; } case OP_POP: { dest = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = vm->stack[vm->sp--]; return true; } case OP_REG_MOV: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = frame.registers[src1]; return true; } case OP_JMP: { dest = read_u8(vm, code, vm->pc); vm->pc++; vm->pc = frame.registers[dest]; /* Jump to address */ return true; } case OP_JMPF: { /* error handling for syscall, jump if flag == 0 */ u32 mask; dest = read_u8(vm, code, vm->pc); vm->pc++; mask = -(u32)(vm->flag == 0); vm->pc = (dest & mask) | (vm->pc & ~mask); return true; } case OP_SYSCALL: { u32 syscall_id, arg_count; u8 first_reg; syscall_id = read_u32(vm, code, vm->pc); vm->pc += 4; arg_count = read_u8(vm, code, vm->pc); vm->pc++; first_reg = read_u8(vm, code, vm->pc); vm->pc++; switch (syscall_id) { case SYSCALL_DEVICE_OPEN: { if (arg_count >= 2) { Device *dev; u32 path_ptr, mode; path_ptr = frame.registers[first_reg]; /* R0: path pointer */ mode = frame.registers[first_reg + 1]; /* R1: mode */ dev = find_device_by_path(vm, (const char *)&vm->memory[path_ptr + 4]); if (dev) { if (dev->ops->open) { vm->flag = dev->ops->open(dev->data, mode); } else { vm->flag = 1; /* success, no open needed */ } } else { vm->flag = 0; /* error */ } } else { vm->flag = 0; /* error: not enough arguments */ } return true; } case SYSCALL_DEVICE_READ: { if (arg_count >= 3) { Device *dev; u32 path_ptr, buffer_ptr, size; path_ptr = frame.registers[first_reg]; /* R0: path pointer */ buffer_ptr = frame.registers[first_reg + 1]; /* R1: buffer pointer */ size = frame.registers[first_reg + 2]; /* R2: size */ dev = find_device_by_path(vm, (const char *)&vm->memory[path_ptr + 4]); if (dev && dev->ops->read) { vm->flag = dev->ops->read(dev->data, (u8 *)&vm->memory[buffer_ptr], size); } else { vm->flag = 0; } } else { vm->flag = 0; /* error: not enough arguments */ } return true; } case SYSCALL_DEVICE_WRITE: { if (arg_count >= 3) { Device *dev; u32 path_ptr, buffer_ptr, size; path_ptr = frame.registers[first_reg]; /* R0: path pointer */ buffer_ptr = frame.registers[first_reg + 1]; /* R1: buffer pointer */ size = frame.registers[first_reg + 2]; /* R2: size */ dev = find_device_by_path(vm, (const char *)&vm->memory[path_ptr + 4]); if (dev && dev->ops->write) { vm->flag = dev->ops->write( dev->data, (const u8 *)&vm->memory[buffer_ptr + 4], size); } else { vm->flag = 0; } } else { vm->flag = 0; /* error: not enough arguments */ } return true; } case SYSCALL_DEVICE_CLOSE: { if (arg_count >= 1) { Device *dev; u32 path_ptr; path_ptr = frame.registers[first_reg]; /* R0: path pointer */ dev = find_device_by_path(vm, (const char *)&vm->memory[path_ptr + 4]); if (dev && dev->ops->close) { i32 result = dev->ops->close(dev->data); vm->flag = result; } else { vm->flag = 0; } } else { vm->flag = 0; /* error: not enough arguments */ } return true; } case SYSCALL_DEVICE_IOCTL: { if (arg_count >= 3) { Device *dev; u32 path_ptr, args_ptr, cmd; path_ptr = frame.registers[first_reg]; /* R0: device path */ cmd = frame.registers[first_reg + 1]; /* R1: ioctl command */ args_ptr = frame.registers[first_reg + 2]; /* R2: args pointer */ dev = find_device_by_path(vm, (const char *)&vm->memory[path_ptr + 4]); if (dev && dev->ops && dev->ops->ioctl) { i32 result = dev->ops->ioctl(dev->data, cmd, &vm->memory[args_ptr]); vm->flag = result; } else { vm->flag = 0; /* error or no ioctl support */ } } else { vm->flag = 0; /* error: not enough arguments */ } return true; } case SYSCALL_EXIT: { return false; } default: { vm->flag = 0; /* unknown syscall */ return true; } } return true; } case OP_ADD_INT: MATH_OP(i32, +); case OP_SUB_INT: MATH_OP(i32, -); case OP_MUL_INT: MATH_OP(i32, *); case OP_DIV_INT: MATH_OP(i32, /); case OP_ADD_UINT: MATH_OP(u32, +); case OP_SUB_UINT: MATH_OP(u32, -); case OP_MUL_UINT: MATH_OP(u32, *); case OP_DIV_UINT: MATH_OP(u32, /); case OP_MUL_REAL: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; src2 = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = (frame.registers[src1] * frame.registers[src2]) >> 16; return true; } case OP_DIV_REAL: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; src2 = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = (frame.registers[src1] << 16) / frame.registers[src2]; return true; } case OP_ADD_REAL: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; src2 = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = frame.registers[src1] + frame.registers[src2]; return true; } case OP_SUB_REAL: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; src2 = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = frame.registers[src1] - frame.registers[src2]; return true; } case OP_REAL_TO_INT: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; value = frame.registers[src1]; if (value >= 0) { frame.registers[dest] = value >> 16; } else { frame.registers[dest] = -((-value) >> 16); } return true; } case OP_INT_TO_REAL: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = (frame.registers[src1] << 16); return true; } case OP_REAL_TO_UINT: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; value = frame.registers[src1]; if (value < 0) { frame.registers[dest] = 0; } else { frame.registers[dest] = AS_UINT(value >> 16); } return true; } case OP_UINT_TO_REAL: { dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; frame.registers[dest] = AS_INT(frame.registers[src1] << 16); return true; } case OP_JEQ_UINT: { COMPARE_AND_JUMP(u32, ==); } case OP_JGT_UINT: { COMPARE_AND_JUMP(u32, >); } case OP_JLT_UINT: { COMPARE_AND_JUMP(u32, <); } case OP_JLE_UINT: { COMPARE_AND_JUMP(u32, <=); } case OP_JGE_UINT: { COMPARE_AND_JUMP(u32, >=); } case OP_JEQ_INT: { COMPARE_AND_JUMP(i32, ==); } case OP_JGT_INT: { COMPARE_AND_JUMP(i32, >); } case OP_JLT_INT: { COMPARE_AND_JUMP(i32, <); } case OP_JLE_INT: { COMPARE_AND_JUMP(i32, <=); } case OP_JGE_INT: { COMPARE_AND_JUMP(i32, >=); } case OP_JEQ_REAL: { COMPARE_AND_JUMP(i32, ==); } case OP_JGT_REAL: { COMPARE_AND_JUMP(i32, >); } case OP_JLT_REAL: { COMPARE_AND_JUMP(i32, <); } case OP_JGE_REAL: { COMPARE_AND_JUMP(i32, >=); } case OP_JLE_REAL: { COMPARE_AND_JUMP(i32, <=); } case OP_INT_TO_STRING: { char buffer[32]; dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; int_to_string(AS_INT(frame.registers[src1]), buffer); ptr = str_alloc(vm, &frame, buffer, strlength(buffer)); frame.registers[dest] = ptr; return true; } case OP_UINT_TO_STRING: { char buffer[32]; dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; uint_to_string(frame.registers[src1], buffer); ptr = str_alloc(vm, &frame, buffer, strlength(buffer)); frame.registers[dest] = ptr; return true; } case OP_REAL_TO_STRING: { char buffer[32]; dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; fixed_to_string(AS_INT(frame.registers[src1]), buffer); ptr = str_alloc(vm, &frame, buffer, strlength(buffer)); /* copy buffer to dest */ frame.registers[dest] = ptr; return true; } case OP_STRLEN: { u32 ptr, length; dest = read_u8(vm, code, vm->pc); vm->pc++; src1 = read_u8(vm, code, vm->pc); vm->pc++; ptr = frame.registers[src1]; length = read_u32(vm, memory, ptr); frame.registers[dest] = length; return true; } case OP_STRING_TO_INT: { /* not implemented yet */ return false; } case OP_STRING_TO_UINT: { /* not implemented yet */ return false; } case OP_STRING_TO_REAL: { /* not implemented yet */ return false; } } return false; /* something bad happened */ }