Compare commits

..

1 Commits

Author SHA1 Message Date
zongor f476b74c3f add initial stuff, is very broken because of overflows 2025-09-07 09:57:57 -07:00
30 changed files with 1496 additions and 322 deletions

3
.gitattributes vendored
View File

@ -1,2 +1 @@
*.ul linguist-language=fortran
*.zl linguist-language=zig
*.zrl linguist-language=fortran

View File

@ -1,4 +1,5 @@
#+TITLE: The Reality Engine
#+TITLE: A Language for Enduring Realities
#+SUBTITLE: "Shape realities that outlast their makers."
#+AUTHOR: Zongor
#+EMAIL: archive@undar-lang.org
#+DATE: [2025-04-05]
@ -15,26 +16,28 @@
· · · ᚾ]
#+END_SRC
The =Reality Engine= is a register-based virtual machine designed to render not just graphics, but persistent, inspectable, reproducible computational worlds.
* The Reality Engine
The =Reality Engine= is a register-based virtual machine designed to render not just graphics, but *realities* - persistent, inspectable, reproducible computational worlds.
It is:
- Written in **C89** for maximum portability
- **No dynamic allocation** - memory is static, frame-managed, zero-initialized
- **Deterministic by design** - identical input -> identical output
- **Deterministic by design** - identical input -> identical output, forever
- **Self-inspectable** - symbol table, memory, and state are always accessible
- Inspired by Uxn, Dis VM, Dusk OS, and Plan 9
**VM Architecture**
| Feature | Specification |
|--------------------+---------------------------------------------|
| Instruction Format | 1-byte opcode, 3-byte operand (CISC-like) |
| Register Set | 32 general-purpose registers (R0-R31) |
| Initialization | **ZII**: Zero Is Initialization |
| Memory Model | Frame-based arenas (function scope = frame) |
| Heap Behavior | Copy-on-write; allocations append to frame |
| Frame Exit | Pointer resets on return (stack-GC style) |
| Error Handling | Returns stub pointers to zeroed memory |
| Feature | Specification |
|-----------------------|----------------------------------------------------|
| Instruction Format | 1-byte opcode, 3-byte operand (CISC-like) |
| Register Set | 32 general-purpose registers (R0-R31) |
| Initialization | **ZII**: Zero Is Initialization |
| Memory Model | Frame-based arenas (function scope = frame) |
| Heap Behavior | Copy-on-write; allocations append to frame |
| Frame Exit | Pointer resets on return (stack-GC style) |
| Error Handling | Returns stub pointers to zeroed memory |
This ensures:
- No =malloc=, no =free=, no GC
@ -42,30 +45,28 @@ This ensures:
- Perfect reproducibility
- Safe failure modes
* Undâr
Undâr is a permacomputing oriented, statically-typed language with **first-class arrays**, **immediate-mode semantics**, and **symbolic clarity**
Undar is a permacomputing oriented, statically-typed language with **first-class arrays**, **immediate-mode semantics**, and **symbolic clarity**
- =Constrained systems=: microcontrollers, retro consoles (PS1, N64, Mac Classic)
- =Portable environments=: Web (Emscripten), embedded, CLI Tui
- =Portable environments=: Web (Emscripten), embedded, CLI
- =Permacomputing=: long-term survivability, sustainability, minimalism
- =3D world-building=: built-in primitives for PS1/N64-style rendering
- =Live development=: hot reloading, REPL, shadowing, symbol versioning
It runs on the =Reality Engine=, a minimal C89 VM inspired by Uxn, Plan 9, and Forth - but built for =spatial software=, =deterministic execution=, and =software that lasts=.
Sċieppan is a minimal lisp inpsired by sectorlisp.
Sċieppan is a bytecode assembler that is inspired by Webassemblys WAT format.
You can view some examples in the =.lisp= files in =/test=
**Core Types**
| Type | Description |
|--------+-------------------------------------------|
| =int= | 32-bit signed integer |
| =nat= | 32-bit natural number |
| =real= | Float/Q16.16 fixed-point real number |
| =str= | 4-byte packed string or fat pointer |
| =bool= | Compile-time flag |
| =ref= | Reference prefix for passing by reference |
| Type | Description |
|--------|-----------------------------------------------|
| =int= | 32-bit signed integer |
| =nat= | 32-bit natural number (also used for pointers)|
| =real= | Q16.16 fixed-point real number |
| =str= | 4-byte packed string or fat pointer |
| =bool= | Compile-time flag |
| =ref= | Reference type for passing by reference |
**Array Semantics (Fortran-Style)**
@ -103,6 +104,7 @@ A =plex= is a **Platonic form** - a structured definition of a kind of being in
#+BEGIN_SRC ul
plex Player {
version 1;
str name;
real[3] pos;
@ -117,8 +119,36 @@ plex Player {
- Not a class: no inheritance, no vtables
- Methods are functions with implicit =this= argument
- Instances are **atoms**
- A plex defines what a thing is. An atom is its instance.
- Instances are **atoms** - persistent, versioned, serializable
- Stored in the internal graph
> *"A plex defines what a thing is. An atom is its instance in that reality."*
* Versioning & Shadowing (Forth-Inspired)
When you redefine a =plex=, the old version is **shadowed but preserved** - unless explicitly discarded.
#+BEGIN_SRC ul
plex Counter { version 1; nat value; inc() { value += 1; } }
plex Counter { version 2; nat value; inc() { value += 2; } } ! shadows v1
Counter c1 = Counter(); ! uses v2 (latest)
Counter c2 = Counter.v1(); ! uses v1 - still available
discard Counter.v1; ! optional: free memory
#+END_SRC
Internally, plex versions form a **linked version chain**:
- =head= -> latest version
- =tail= -> oldest retained version
- =migrate(obj, Counter)= -> converts data layout
- =versions(Counter)= -> list available versions
This enables:
- Non-destructive evolution
- Safe refactoring
- Historical reproducibility
- Code archaeology
* Graphics & Devices
@ -168,22 +198,37 @@ if (server.attach(auth)) {
**Tunnel Operations**
| Op | Meaning |
|------------+-----------------------|
| =.attach()= | Authenticate and open |
| =.open()= | Open resource |
| =.read()= | Transfer data |
| =.write()= | Transfer data |
| =.walk()= | Navigate hierarchy |
| =.flush()= | Cancel long operation |
| =.clunk()= | Close connection |
| =.stat()= | Get metadata |
| =.version()= | Get protocol version |
| Op | Meaning |
|------------|-------------------------|
| =.attach()= | Authenticate and open |
| =.open()= | Open resource |
| =.read()= |Transfer data |
| =.write()= | Transfer data |
| =.walk()= | Navigate hierarchy |
| =.flush()= | Cancel long operation |
| =.clunk()= | Close connection |
| =.stat()= | Get metadata |
| =.version()=| Get protocol version |
Tunnels make I/O **uniform, composable, and archival**.
* Development Environment
supports **live coding** and **temporal development**:
**Live Coding Features**
- Hot module reloading: inject code while VM runs
- REPL-style interaction: inspect memory, call functions, test logic
- Shadowing: redefine =plex=es without restarting
- Symbol table manipulation: runtime introspection and patching
**Final Binaries**
- Are **snapshots** of:
- Memory state
- Symbol table
- Version chains
- Can be saved, restored, or archived as =.zbin= files
- Are fully deterministic and reproducible
* Getting Started
@ -263,12 +308,16 @@ function main(int argc, str[] argv) {
- Versioned plexes: forward/backward compatibility
- Self-documenting syntax: just enough magic
- Open standard: no vendor lock-in
- Archive formats: =.ul=, =.ubin=, =.uatom=
- Archive formats: =.ul=, =.zbin=, =.zatom=
* License
**MIT-0** - No restrictions, no warranty.
With an ethical understanding:
> This software should not be used to accelerate obsolescence, exploit users, or harm ecosystems. Compute only to strengthen what lasts.
* Inspirations
- [[https://wiki.xxiivv.com/site/uxn.html][Uxn]] - Minimalism, elegance
@ -287,12 +336,15 @@ function main(int argc, str[] argv) {
* Join the Effort
The Reality Engine is a community project. We welcome:
- Compiler contributors
- Port developers (Web, Game Boy, etc.)
- Artists and game designers
- Archivists and historians
> *"We are not making programs. We are writing Ages."*
* Contact
- Website: https://undar-lang.org
- Email: archive@undar-lang.org
- Repository: https://git.alfrescocavern.com/zongor/reality-engine.git

View File

@ -4,9 +4,6 @@ function main(int argc, str[] argv) {
nat screen_width = 800;
nat screen_height = 450;
if (argv < 2) {
exits("usage: zre client.ul <username> <password>");
}
str username = argv[1];
str password = argv[2];

View File

@ -1,11 +1,11 @@
!!
! Note that these look like classes but act like structs
! the methods actually have a implied struct as their first argument
!!
/**
* Note that these look like classes but act like structs
* the methods actually have a implied struct as their first argument
*/
!!
! Camera.
!!
/**
* Camera.
*/
plex Camera {
init(real[3] pos, real[3] look) {
this.setting = "CAMERA_PERSPECTIVE";
@ -16,9 +16,9 @@ plex Camera {
}
}
!!
! Player.
!!
/**
* Player.
*/
plex Player {
init(str username, real[3] pos, Color color) {
this.client = Client("tcp://localhost:25565");

View File

Before

Width:  |  Height:  |  Size: 26 KiB

After

Width:  |  Height:  |  Size: 26 KiB

View File

Before

Width:  |  Height:  |  Size: 26 KiB

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -2,7 +2,7 @@
# -----------------------
# Native build (gcc)
CC_NATIVE = gcc
CFLAGS_NATIVE = -g -std=c89 -Wall -Wextra -Werror -Wno-unused-parameter -I. #-O2
CFLAGS_NATIVE = -g -O2 -std=c89 -Wall -Wextra -Werror -Wno-unused-parameter -I.
LDFLAGS_NATIVE =
LDLIBS_NATIVE = -lSDL2

View File

@ -18,7 +18,7 @@ int screen_open(void *data, uint32_t mode) {
return -1;
screen->texture = SDL_CreateTexture(
screen->renderer, SDL_PIXELFORMAT_RGB332, SDL_TEXTUREACCESS_STREAMING,
screen->renderer, SDL_PIXELFORMAT_ARGB8888, SDL_TEXTUREACCESS_STREAMING,
screen->width, screen->height);
if (!screen->texture)
return -1;
@ -32,7 +32,7 @@ int screen_read(void *data, uint8_t *buffer, uint32_t size) { return -1; }
int screen_write(void *data, const uint8_t *buffer, uint32_t size) {
ScreenDeviceData *screen = (ScreenDeviceData *)data;
if (size > screen->framebuffer_size * sizeof(uint8_t)) {
if (size > screen->framebuffer_size * sizeof(uint32_t)) {
return -1;
}

View File

@ -1,3 +1,4 @@
#include "../../compiler.h"
#include "../../test.h"
#include "../../vm.h"
#include "devices.h"
@ -8,23 +9,29 @@
#define MAX_SRC_SIZE 16384
static DeviceOps screen_ops = {.open = screen_open,
.read = screen_read,
.write = screen_write,
.close = screen_close,
.ioctl = NULL};
static DeviceOps screen_ops = {
.open = screen_open,
.read = screen_read,
.write = screen_write,
.close = screen_close,
.ioctl = NULL
};
static DeviceOps mouse_ops = {.open = mouse_open,
.read = mouse_read,
.write = mouse_write,
.close = mouse_close,
.ioctl = NULL};
static DeviceOps mouse_ops = {
.open = mouse_open,
.read = mouse_read,
.write = mouse_write,
.close = mouse_close,
.ioctl = NULL
};
static DeviceOps keyboard_ops = {.open = keyboard_open,
.read = keyboard_read,
.write = keyboard_write,
.close = keyboard_close,
.ioctl = NULL};
static DeviceOps keyboard_ops= {
.open = keyboard_open,
.read = keyboard_read,
.write = keyboard_write,
.close = keyboard_close,
.ioctl = NULL
};
static ScreenDeviceData screen_data = {0};
static MouseDeviceData mouse_data = {0};
@ -49,6 +56,8 @@ void compileFile(const char *path, VM *vm) {
size_t read = fread(source, 1, len, f);
source[read] = '\0';
fclose(f);
compile(source, vm);
}
void repl(VM *vm) {
@ -66,7 +75,7 @@ void repl(VM *vm) {
vm->pc = 0;
vm->mp = 0;
/* assemble(line, vm); */
compile(line, vm);
while (step_vm(vm))
;
}
@ -117,7 +126,7 @@ int parse_arguments(int argc, char *argv[], struct CompilerConfig *config) {
fprintf(stderr, "Unknown flag: %s\n", argv[i]);
return -1;
}
} else if (strstr(argv[i], ".ul") != NULL) {
} else if (strstr(argv[i], ".zrl") != NULL) {
/* Collect input files */
if (config->input_file_count >= MAX_INPUT_FILES) {
fprintf(stderr, "Too many input files. Maximum is %d\n",
@ -137,7 +146,7 @@ void register_sdl_devices(VM *vm) {
screen_data.height = 480;
screen_data.framebuffer_size = 640 * 480;
screen_data.framebuffer_pos = vm->mp;
vm->mp += screen_data.framebuffer_size / 4; /* advance memory pointer */
vm->mp += screen_data.framebuffer_size; /* advance memory pointer */
vm_register_device(vm, "/dev/screen/0", "screen", &screen_data, &screen_ops);
@ -160,12 +169,14 @@ int main(int argc, char *argv[]) {
struct CompilerConfig config = {0};
if (parse_arguments(argc, argv, &config) != 0) {
fprintf(stderr, "Usage: %s [-d] [-t] [-g] [-o] <file1.ul> [file2.ul] ...\n",
fprintf(stderr,
"Usage: %s [-d] [-t] [-g] [-o] <file1.zrl> [file2.zrl] ...\n",
argv[0]);
return 64;
}
VM vm = {0};
if (config.input_file_count == 0) {
repl(&vm);
} else {
@ -207,9 +218,9 @@ int main(int argc, char *argv[]) {
}
bool running = true;
register_sdl_devices(&vm);
if (config.flags & FLAG_GUI_MODE) {
uint32_t i;
register_sdl_devices(&vm);
while (running) {
for (i = 0; i < vm.dc; i++) {
Device *dev = &vm.devices[i];
@ -258,8 +269,7 @@ int main(int argc, char *argv[]) {
if (strcmp(dev->type, "screen") == 0) {
ScreenDeviceData *screen = (ScreenDeviceData *)dev->data;
if (screen->texture && screen->renderer) {
SDL_UpdateTexture(screen->texture, NULL,
&vm.memory[screen->framebuffer_pos],
SDL_UpdateTexture(screen->texture, NULL, &vm.memory[screen->framebuffer_pos],
screen->width * sizeof(uint32_t));
SDL_RenderClear(screen->renderer);

View File

@ -1,5 +1,5 @@
#ifndef ZRE_COMMON_H
#define ZRE_COMMON_H
#ifndef ZRL_COMMON_H
#define ZRL_COMMON_H
#include <stdio.h>
#include <stdlib.h>

377
src/compiler.c Normal file
View File

@ -0,0 +1,377 @@
#include "compiler.h"
#include "vm.h"
#include <stdio.h>
typedef struct {
Token current;
Token previous;
bool hadError;
bool panicMode;
} Parser;
typedef enum {
PREC_NONE,
PREC_ASSIGNMENT, /* = */
PREC_OR, /* or */
PREC_AND, /* and */
PREC_EQUALITY, /* == != */
PREC_COMPARISON, /* < > <= >= */
PREC_TERM, /* + - */
PREC_FACTOR, /* * / */
PREC_UNARY, /* not */
PREC_CALL, /* . () */
PREC_PRIMARY
} Precedence;
typedef void (*ParseFn)(VM *vm);
typedef struct {
ParseFn prefix;
ParseFn infix;
Precedence precedence;
} ParseRule;
Parser parser;
SymbolTable st;
const char *internalErrorMsg = "FLAGRANT COMPILER ERROR\n\nCompiler over.\nBug = Very Yes.";
void errorAt(Token *token, const char *message) {
if (parser.panicMode)
return;
parser.panicMode = true;
fprintf(stderr, "[line %d] Error", token->line);
if (token->type == TOKEN_EOF) {
fprintf(stderr, " at end");
} else if (token->type == TOKEN_ERROR) {
} else {
fprintf(stderr, " at '%.*s'", token->length, token->start);
}
fprintf(stderr, ": %s\n", message);
parser.hadError = true;
}
void error(const char *message) { errorAt(&parser.previous, message); }
void errorAtCurrent(const char *message) { errorAt(&parser.current, message); }
void advance() {
parser.previous = parser.current;
for (;;) {
parser.current = nextToken();
if (parser.current.type != TOKEN_ERROR)
break;
errorAtCurrent(parser.current.start);
}
}
void consume(TokenType type, const char *message) {
if (parser.current.type == type) {
advance();
return;
}
errorAtCurrent(message);
}
static bool check(TokenType type) { return parser.current.type == type; }
static bool match(TokenType type) {
if (!check(type))
return false;
advance();
return true;
}
void emitOp(VM *vm, uint8_t opcode, uint8_t dest, uint8_t src1, uint8_t src2) {
vm->code[vm->cp++].u = OP(opcode, dest, src1, src2);
}
void expression(VM *vm);
void statement(VM *vm);
void declaration(VM *vm);
ParseRule *getRule(TokenType type);
void parsePrecedence(VM *vm, Precedence precedence);
void number(VM *vm) {
if (parser.previous.type == TOKEN_INT_LITERAL) {
char *endptr;
int32_t value = (int32_t)strtol(parser.previous.start, &endptr, 10);
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].u = int_alloc(vm, value);
return;
} else if (parser.previous.type == TOKEN_UINT_LITERAL) {
long value = atol(parser.previous.start);
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].u = nat_alloc(vm, value);
return;
} else if (parser.previous.type == TOKEN_FLOAT_LITERAL) {
float value = atof(parser.previous.start);
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].u = real_alloc(vm, value);
return;
}
errorAtCurrent("Invalid number format");
}
void string(VM *vm) {
uint32_t length = parser.previous.length - 2;
uint32_t str_addr = vm->mp;
vm->memory[vm->mp++].u = length;
uint32_t i, j = 0;
for (i = 0; i < length; i++) {
vm->memory[vm->mp].c[i % 4] = parser.previous.start[i + 1];
if (++j == 4) {
j = 0;
vm->mp++;
}
}
vm->frames[vm->fp].allocated.end += length / 4;
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].u = str_addr;
}
void grouping(VM *vm) {
expression(vm);
consume(TOKEN_RPAREN, "Expect ')' after expression.");
}
void unary(VM *vm) {
TokenType operatorType = parser.previous.type;
parsePrecedence(vm, PREC_UNARY);
switch (operatorType) {
default:
return;
}
}
static void literal(VM *vm) {
switch (parser.previous.type) {
case TOKEN_KEYWORD_NIL: {
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].u = 0;
break;
}
case TOKEN_KEYWORD_FALSE: {
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].u = 0;
break;
}
case TOKEN_KEYWORD_TRUE: {
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].u = 1;
break;
}
default:
return;
}
}
void binary(VM *vm) {
TokenType operatorType = parser.previous.type;
ParseRule *rule = getRule(operatorType);
parsePrecedence(vm, (Precedence)(rule->precedence + 1));
TokenType operandType = parser.previous.type;
Frame f = vm->frames[vm->fp];
uint32_t src1 = f.rp--;
uint32_t src2 = f.rp--;
uint32_t dest = f.rp++;
switch (operatorType) {
case TOKEN_PLUS:
if (operandType == TOKEN_UINT_LITERAL) {
emitOp(vm, OP_ADD_UINT, dest, src1, src2);
} else if (operandType == TOKEN_INT_LITERAL) {
emitOp(vm, OP_ADD_INT, dest, src1, src2);
} else if (operandType == TOKEN_FLOAT_LITERAL) {
emitOp(vm, OP_ADD_REAL, dest, src1, src2);
} else {
error("not numeric");
}
break;
case TOKEN_MINUS:
if (operandType == TOKEN_UINT_LITERAL) {
emitOp(vm, OP_SUB_UINT, dest, src1, src2);
} else if (operandType == TOKEN_INT_LITERAL) {
emitOp(vm, OP_SUB_INT, dest, src1, src2);
} else if (operandType == TOKEN_FLOAT_LITERAL) {
emitOp(vm, OP_SUB_REAL, dest, src1, src2);
} else {
error("not numeric");
}
break;
case TOKEN_STAR:
if (operandType == TOKEN_UINT_LITERAL) {
emitOp(vm, OP_MUL_UINT, dest, src1, src2);
} else if (operandType == TOKEN_INT_LITERAL) {
emitOp(vm, OP_MUL_INT, dest, src1, src2);
} else if (operandType == TOKEN_FLOAT_LITERAL) {
emitOp(vm, OP_MUL_REAL, dest, src1, src2);
} else {
error("not numeric");
}
break;
case TOKEN_SLASH:
if (operandType == TOKEN_UINT_LITERAL) {
emitOp(vm, OP_DIV_UINT, dest, src1, src2);
} else if (operandType == TOKEN_INT_LITERAL) {
emitOp(vm, OP_DIV_INT, dest, src1, src2);
} else if (operandType == TOKEN_FLOAT_LITERAL) {
emitOp(vm, OP_DIV_REAL, dest, src1, src2);
} else {
error("not numeric");
}
break;
default:
return; /* Unreachable. */
}
}
ParseRule rules[] = {
[TOKEN_LPAREN] = {grouping, NULL, PREC_NONE},
[TOKEN_RPAREN] = {NULL, NULL, PREC_NONE},
[TOKEN_LBRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_RBRACE] = {NULL, NULL, PREC_NONE},
[TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
[TOKEN_DOT] = {NULL, NULL, PREC_NONE},
[TOKEN_MINUS] = {NULL, binary, PREC_TERM},
[TOKEN_PLUS] = {NULL, binary, PREC_TERM},
[TOKEN_SEMICOLON] = {NULL, NULL, PREC_NONE},
[TOKEN_SLASH] = {NULL, binary, PREC_FACTOR},
[TOKEN_STAR] = {NULL, binary, PREC_FACTOR},
[TOKEN_BANG] = {NULL, NULL, PREC_NONE},
[TOKEN_BANG_EQ] = {NULL, NULL, PREC_NONE},
[TOKEN_EQ] = {NULL, NULL, PREC_NONE},
[TOKEN_EQ_EQ] = {NULL, NULL, PREC_NONE},
[TOKEN_GT] = {NULL, NULL, PREC_NONE},
[TOKEN_GTE] = {NULL, NULL, PREC_NONE},
[TOKEN_LT] = {NULL, NULL, PREC_NONE},
[TOKEN_LTE] = {NULL, NULL, PREC_NONE},
[TOKEN_IDENTIFIER] = {NULL, NULL, PREC_NONE},
[TOKEN_STRING_LITERAL] = {string, NULL, PREC_NONE},
[TOKEN_INT_LITERAL] = {number, NULL, PREC_NONE},
[TOKEN_UINT_LITERAL] = {number, NULL, PREC_NONE},
[TOKEN_FLOAT_LITERAL] = {number, NULL, PREC_NONE},
[TOKEN_KEYWORD_ELSE] = {NULL, NULL, PREC_NONE},
[TOKEN_KEYWORD_FOR] = {NULL, NULL, PREC_NONE},
[TOKEN_KEYWORD_FN] = {NULL, NULL, PREC_NONE},
[TOKEN_KEYWORD_IF] = {NULL, NULL, PREC_NONE},
[TOKEN_OPERATOR_AND] = {NULL, binary, PREC_NONE},
[TOKEN_OPERATOR_OR] = {NULL, binary, PREC_NONE},
[TOKEN_OPERATOR_NOT] = {unary, NULL, PREC_NONE},
[TOKEN_KEYWORD_NIL] = {literal, NULL, PREC_NONE},
[TOKEN_KEYWORD_TRUE] = {literal, NULL, PREC_NONE},
[TOKEN_KEYWORD_FALSE] = {literal, NULL, PREC_NONE},
[TOKEN_KEYWORD_PRINT] = {NULL, NULL, PREC_NONE},
[TOKEN_KEYWORD_RETURN] = {NULL, NULL, PREC_NONE},
[TOKEN_KEYWORD_THIS] = {NULL, NULL, PREC_NONE},
[TOKEN_KEYWORD_LET] = {NULL, NULL, PREC_NONE},
[TOKEN_KEYWORD_WHILE] = {NULL, NULL, PREC_NONE},
[TOKEN_ERROR] = {NULL, NULL, PREC_NONE},
[TOKEN_EOF] = {NULL, NULL, PREC_NONE},
};
ParseRule *getRule(TokenType type) { return &rules[type]; }
void parsePrecedence(VM *vm, Precedence precedence) {
advance();
ParseFn prefixRule = getRule(parser.previous.type)->prefix;
if (prefixRule == NULL) {
error("Expect expression.");
return;
}
prefixRule(vm);
while (precedence <= getRule(parser.current.type)->precedence) {
advance();
ParseFn infixRule = getRule(parser.previous.type)->infix;
infixRule(vm);
}
}
void expression(VM *vm) { parsePrecedence(vm, PREC_ASSIGNMENT); }
void printStatement(VM *vm) {
expression(vm);
consume(TOKEN_SEMICOLON, "Expect ';' after value.");
Frame f = vm->frames[vm->fp];
vm->code[vm->cp++].u = OP(OP_DBG_PRINT_STRING, 0, f.rp--, 0);
}
static void expressionStatement(VM *vm) {
expression(vm);
consume(TOKEN_SEMICOLON, "Expect ';' after expression.");
}
static void intDeclaration(VM *vm) {
/* insert variable name in symbol table */
uint32_t length = parser.previous.length - 2;
if (length > SYMBOL_NAME_SIZE) {
error("Variable names cannot be longer than 24 characters.");
return;
}
st.symbols[st.sc].type = INT;
st.symbols[st.sc].frame = vm->fp;
Frame f = vm->frames[vm->fp];
st.symbols[st.sc].reg = f.rp;
uint32_t i;
for (i = 0; i < length; i++) {
st.symbols[st.sc].name[i] = parser.previous.start[i + 1];
}
st.sc++;
if (match(TOKEN_EQ)) {
expression(vm);
} else {
/* initialize as zero/null */
emitOp(vm, OP_LOAD, vm->frames[vm->fp].rp++, 0, 0);
vm->code[vm->cp++].i = 0;
}
consume(TOKEN_SEMICOLON, "Expect ';' after expression.");
}
void statement(VM *vm) {
if (match(TOKEN_KEYWORD_PRINT)) {
printStatement(vm);
} else if (match(TOKEN_TYPE_INT)) {
intDeclaration(vm);
} else {
expressionStatement(vm);
}
}
void declaration(VM *vm) { statement(vm); }
bool compile(const char *source, VM *vm) {
initLexer(source);
parser.hadError = false;
parser.panicMode = false;
st.sc = 0;
st.name[0] = 'm';
st.name[1] = 'a';
st.name[2] = 'i';
st.name[3] = 'n';
advance();
while (!match(TOKEN_EOF)) {
declaration(vm);
}
emitOp(vm, OP_HALT, 0, 0, 0);
return !parser.hadError;
}

47
src/compiler.h Normal file
View File

@ -0,0 +1,47 @@
#ifndef ZRL_COMPILER_H
#define ZRL_COMPILER_H
#include "lexer.h"
#include "opcodes.h"
typedef enum { INT, REAL, NATURAL, POINTER, STRING, ARRAY, PLEX } SymbolType;
typedef struct plex_def_t {
SymbolType subtype;
uint32_t size;
} PlexDef;
typedef struct array_def_t {
SymbolType subtype;
uint32_t length;
} ArrayDef;
#define SYMBOL_NAME_SIZE 24
typedef struct symbol_t {
char name[SYMBOL_NAME_SIZE];
SymbolType type;
union {
PlexDef pd;
ArrayDef ad;
};
int8_t reg;
uint8_t flags[3]; /* only use for padding now, might be used later*/
uint32_t frame;
uint32_t ptr;
} Symbol;
#define MODULE_NAME_SIZE 32
#define SYMBOL_COUNT 256
typedef struct symbol_table_t {
char name[MODULE_NAME_SIZE];
Symbol symbols[SYMBOL_COUNT];
uint32_t sc;
} SymbolTable;
extern SymbolTable st;
bool compile(const char *source, VM *vm);
#endif

View File

@ -1,5 +1,5 @@
#ifndef ZRE_DEVICE_H
#define ZRE_DEVICE_H
#ifndef ZRL_DEVICE_H
#define ZRL_DEVICE_H
#include "opcodes.h"

201
src/fixed.c Normal file
View File

@ -0,0 +1,201 @@
/* fixed.c - Q16.16 Fixed-Point Math Implementation */
#include "fixed.h"
/* Conversion functions */
fixed_t int_to_fixed(int32_t i) {
return i << 16;
}
int32_t fixed_to_int(fixed_t f) {
return f >> 16;
}
fixed_t float_to_fixed(float f) {
return (fixed_t)(f * 65536.0f);
}
float fixed_to_float(fixed_t f) {
return (float)f / 65536.0f;
}
fixed_t fixed_add(fixed_t a, fixed_t b) {
return a + b;
}
fixed_t fixed_sub(fixed_t a, fixed_t b) {
return a - b;
}
fixed_t fixed_mul(fixed_t a, fixed_t b) {
/* Extract high and low parts */
int32_t a_hi = a >> 16;
uint32_t a_lo = (uint32_t)a & 0xFFFFU;
int32_t b_hi = b >> 16;
uint32_t b_lo = (uint32_t)b & 0xFFFFU;
/* Compute partial products */
int32_t p0 = (int32_t)(a_lo * b_lo) >> 16; /* Low * Low */
int32_t p1 = a_hi * (int32_t)b_lo; /* High * Low */
int32_t p2 = (int32_t)a_lo * b_hi; /* Low * High */
int32_t p3 = (a_hi * b_hi) << 16; /* High * High */
/* Combine results */
return p0 + p1 + p2 + p3;
}
fixed_t fixed_div(fixed_t a, fixed_t b) {
if (b == 0) return 0; /* Handle division by zero */
/* Determine sign */
int negative = ((a < 0) ^ (b < 0));
/* Work with absolute values */
uint32_t ua = (a < 0) ? -a : a;
uint32_t ub = (b < 0) ? -b : b;
/* Perform division using long division in base 2^16 */
uint32_t quotient = 0;
uint32_t remainder = 0;
int i;
for (i = 0; i < 32; i++) {
remainder <<= 1;
if (ua & 0x80000000U) {
remainder |= 1;
}
ua <<= 1;
if (remainder >= ub) {
remainder -= ub;
quotient |= 1;
}
if (i < 31) {
quotient <<= 1;
}
}
return negative ? -(int32_t)quotient : (int32_t)quotient;
}
int fixed_eq(fixed_t a, fixed_t b) {
return a == b;
}
int fixed_ne(fixed_t a, fixed_t b) {
return a != b;
}
int fixed_lt(fixed_t a, fixed_t b) {
return a < b;
}
int fixed_le(fixed_t a, fixed_t b) {
return a <= b;
}
int fixed_gt(fixed_t a, fixed_t b) {
return a > b;
}
int fixed_ge(fixed_t a, fixed_t b) {
return a >= b;
}
/* Unary operations */
fixed_t fixed_neg(fixed_t f) {
return -f;
}
fixed_t fixed_abs(fixed_t f) {
return (f < 0) ? -f : f;
}
/* Square root using Newton-Raphson method */
fixed_t fixed_sqrt(fixed_t f) {
if (f <= 0) return 0;
fixed_t x = f;
fixed_t prev;
/* Newton-Raphson iteration: x = (x + f/x) / 2 */
do {
prev = x;
x = fixed_div(fixed_add(x, fixed_div(f, x)), int_to_fixed(2));
} while (fixed_gt(fixed_abs(fixed_sub(x, prev)), 1)); /* Precision to 1/65536 */
return x;
}
/* Sine function using Taylor series */
fixed_t fixed_sin(fixed_t f) {
/* Normalize angle to [-π, π] */
fixed_t pi2 = fixed_mul(FIXED_PI, int_to_fixed(2));
while (fixed_gt(f, FIXED_PI)) f = fixed_sub(f, pi2);
while (fixed_lt(f, fixed_neg(FIXED_PI))) f = fixed_add(f, pi2);
/* Taylor series: sin(x) = x - x³/3! + x⁵/5! - x⁷/7! + ... */
fixed_t result = f;
fixed_t term = f;
fixed_t f_squared = fixed_mul(f, f);
/* Calculate first few terms for reasonable precision */
int i;
for (i = 3; i <= 11; i += 2) {
term = fixed_mul(term, f_squared);
term = fixed_div(term, int_to_fixed(i * (i - 1)));
if ((i / 2) % 2 == 0) {
result = fixed_add(result, term);
} else {
result = fixed_sub(result, term);
}
}
return result;
}
/* Cosine function using Taylor series */
fixed_t fixed_cos(fixed_t f) {
/* cos(x) = 1 - x²/2! + x⁴/4! - x⁶/6! + ... */
fixed_t result = FIXED_ONE;
fixed_t term = FIXED_ONE;
fixed_t f_squared = fixed_mul(f, f);
int i;
for (i = 2; i <= 12; i += 2) {
term = fixed_mul(term, f_squared);
term = fixed_div(term, int_to_fixed(i * (i - 1)));
if ((i / 2) % 2 == 0) {
result = fixed_add(result, term);
} else {
result = fixed_sub(result, term);
}
}
return result;
}
/* Tangent function */
fixed_t fixed_tan(fixed_t f) {
fixed_t cos_val = fixed_cos(f);
if (cos_val == 0) return 0; /* Handle undefined case */
return fixed_div(fixed_sin(f), cos_val);
}
/* Utility functions */
fixed_t fixed_min(fixed_t a, fixed_t b) {
return (a < b) ? a : b;
}
fixed_t fixed_max(fixed_t a, fixed_t b) {
return (a > b) ? a : b;
}
fixed_t fixed_clamp(fixed_t f, fixed_t min_val, fixed_t max_val) {
if (f < min_val) return min_val;
if (f > max_val) return max_val;
return f;
}

55
src/fixed.h Normal file
View File

@ -0,0 +1,55 @@
/* fixed.h - Q16.16 Fixed-Point Math Library in C89 */
#ifndef FIXED_H
#define FIXED_H
#include <stdint.h>
/* Q16.16 fixed-point type */
typedef int32_t fixed_t;
/* Constants */
#define FIXED_ONE 0x00010000L /* 1.0 in Q16.16 */
#define FIXED_ZERO 0x00000000L /* 0.0 in Q16.16 */
#define FIXED_HALF 0x00008000L /* 0.5 in Q16.16 */
#define FIXED_PI 0x0003243FL /* π ≈ 3.14159 */
#define FIXED_E 0x0002B7E1L /* e ≈ 2.71828 */
#define FIXED_MAX 0x7FFFFFFFL /* Maximum positive value */
#define FIXED_MIN 0x80000000L /* Minimum negative value */
/* Conversion functions */
fixed_t int_to_fixed(int32_t i);
int32_t fixed_to_int(fixed_t f);
fixed_t float_to_fixed(float f);
float fixed_to_float(fixed_t f);
/* Basic arithmetic operations */
fixed_t fixed_add(fixed_t a, fixed_t b);
fixed_t fixed_sub(fixed_t a, fixed_t b);
fixed_t fixed_mul(fixed_t a, fixed_t b);
fixed_t fixed_div(fixed_t a, fixed_t b);
/* Comparison functions */
int fixed_eq(fixed_t a, fixed_t b);
int fixed_ne(fixed_t a, fixed_t b);
int fixed_lt(fixed_t a, fixed_t b);
int fixed_le(fixed_t a, fixed_t b);
int fixed_gt(fixed_t a, fixed_t b);
int fixed_ge(fixed_t a, fixed_t b);
/* Unary operations */
fixed_t fixed_neg(fixed_t f);
fixed_t fixed_abs(fixed_t f);
/* Advanced math functions */
fixed_t fixed_sqrt(fixed_t f);
fixed_t fixed_sin(fixed_t f); /* f in radians */
fixed_t fixed_cos(fixed_t f); /* f in radians */
fixed_t fixed_tan(fixed_t f); /* f in radians */
/* Utility functions */
fixed_t fixed_min(fixed_t a, fixed_t b);
fixed_t fixed_max(fixed_t a, fixed_t b);
fixed_t fixed_clamp(fixed_t f, fixed_t min, fixed_t max);
#endif /* FIXED_H */

248
src/lexer.c Normal file
View File

@ -0,0 +1,248 @@
#include <string.h>
#include "common.h"
#include "lexer.h"
typedef struct {
const char *start;
const char *current;
int line;
} Lexer;
Lexer lexer;
void initLexer(const char *source) {
lexer.start = source;
lexer.current = source;
lexer.line = 1;
}
static bool isAlpha(char c) {
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_';
}
static bool isDigit(char c) { return c >= '0' && c <= '9'; }
static bool isAtEnd() { return *lexer.current == '\0'; }
static char advance() {
lexer.current++;
return lexer.current[-1];
}
static char peek() { return *lexer.current; }
static char peekNext() {
if (isAtEnd())
return '\0';
return lexer.current[1];
}
static bool match(char expected) {
if (isAtEnd())
return false;
if (*lexer.current != expected)
return false;
lexer.current++;
return true;
}
static Token makeToken(TokenType type) {
Token token;
token.type = type;
token.start = lexer.start;
token.length = (int)(lexer.current - lexer.start);
token.line = lexer.line;
return token;
}
static Token errorToken(const char *message) {
Token token;
token.type = TOKEN_ERROR;
token.start = message;
token.length = (int)strlen(message);
token.line = lexer.line;
return token;
}
static void skipWhitespace() {
for (;;) {
char c = peek();
switch (c) {
case ' ':
case '\r':
case '\t':
advance();
break;
case '\n':
lexer.line++;
advance();
break;
case '/':
if (peekNext() == '/') {
/* A comment goes until the end of the line. */
while (peek() != '\n' && !isAtEnd())
advance();
} else {
return;
}
break;
default:
return;
}
}
}
static TokenType checkKeyword(int start, int length, const char *rest,
TokenType type) {
if (lexer.current - lexer.start == start + length &&
memcmp(lexer.start + start, rest, length) == 0) {
return type;
}
return TOKEN_IDENTIFIER;
}
static TokenType identifierType() {
switch (lexer.start[0]) {
case 'a':
return checkKeyword(1, 2, "nd", TOKEN_OPERATOR_AND);
case 'e':
return checkKeyword(1, 3, "lse", TOKEN_KEYWORD_ELSE);
case 'f':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'a':
return checkKeyword(2, 3, "lse", TOKEN_KEYWORD_FALSE);
case 'o':
return checkKeyword(2, 1, "r", TOKEN_KEYWORD_FOR);
}
return checkKeyword(1, 1, "n", TOKEN_KEYWORD_FN);
}
break;
case 'i':
return checkKeyword(1, 1, "f", TOKEN_KEYWORD_IF);
case 'n':
return checkKeyword(1, 2, "il", TOKEN_KEYWORD_NIL);
case 'o':
return checkKeyword(1, 1, "r", TOKEN_OPERATOR_OR);
case 'p':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'l':
return checkKeyword(2, 2, "ex", TOKEN_KEYWORD_PLEX);
case 'r':
return checkKeyword(2, 3, "int", TOKEN_KEYWORD_PRINT);
}
}
break;
case 'r':
return checkKeyword(1, 5, "eturn", TOKEN_KEYWORD_RETURN);
case 't':
if (lexer.current - lexer.start > 1) {
switch (lexer.start[1]) {
case 'h':
return checkKeyword(2, 2, "is", TOKEN_KEYWORD_THIS);
case 'r':
return checkKeyword(2, 2, "ue", TOKEN_KEYWORD_TRUE);
}
}
break;
case 'l':
return checkKeyword(1, 2, "et", TOKEN_KEYWORD_LET);
case 'w':
return checkKeyword(1, 4, "hile", TOKEN_KEYWORD_WHILE);
}
return TOKEN_IDENTIFIER;
}
static Token identifier() {
while (isAlpha(peek()) || isDigit(peek()))
advance();
return makeToken(identifierType());
}
static Token number() {
while (isDigit(peek()))
advance();
/* Look for a fractional part. */
if (peek() == '.' && isDigit(peekNext())) {
/* Consume the ".". */
advance();
while (isDigit(peek()))
advance();
return makeToken(TOKEN_FLOAT_LITERAL);
}
return makeToken(TOKEN_INT_LITERAL);
}
static Token string() {
while (peek() != '"' && !isAtEnd()) {
if (peek() == '\n')
lexer.line++;
advance();
}
if (isAtEnd())
return errorToken("Unterminated string.");
/* The closing quote. */
advance();
return makeToken(TOKEN_STRING_LITERAL);
}
Token nextToken() {
skipWhitespace();
lexer.start = lexer.current;
if (isAtEnd())
return makeToken(TOKEN_EOF);
char c = advance();
if (isAlpha(c))
return identifier();
if (isDigit(c))
return number();
switch (c) {
case '(':
return makeToken(TOKEN_LPAREN);
case ')':
return makeToken(TOKEN_RPAREN);
case '{':
return makeToken(TOKEN_LBRACE);
case '}':
return makeToken(TOKEN_RBRACE);
case ';':
return makeToken(TOKEN_SEMICOLON);
case ',':
return makeToken(TOKEN_COMMA);
case '.':
return makeToken(TOKEN_DOT);
case '-':
return makeToken(TOKEN_MINUS);
case '+':
return makeToken(TOKEN_PLUS);
case '/':
return makeToken(TOKEN_SLASH);
case '*':
return makeToken(TOKEN_STAR);
case '!':
return makeToken(match('=') ? TOKEN_BANG_EQ : TOKEN_BANG);
case '=':
return makeToken(match('=') ? TOKEN_EQ_EQ : TOKEN_EQ);
case '<':
return makeToken(match('=') ? TOKEN_LTE : TOKEN_LT);
case '>':
return makeToken(match('=') ? TOKEN_GTE : TOKEN_GT);
case '"':
return string();
}
return errorToken("Unexpected character.");
}

70
src/lexer.h Normal file
View File

@ -0,0 +1,70 @@
#ifndef zre_lexer_h
#define zre_lexer_h
typedef enum {
TOKEN_EOF,
TOKEN_IDENTIFIER,
TOKEN_INT_LITERAL,
TOKEN_UINT_LITERAL,
TOKEN_FLOAT_LITERAL,
TOKEN_STRING_LITERAL,
TOKEN_TYPE_INT,
TOKEN_TYPE_NAT,
TOKEN_TYPE_REAL,
TOKEN_TYPE_STR,
TOKEN_KEYWORD_PLEX,
TOKEN_KEYWORD_FN,
TOKEN_KEYWORD_LET,
TOKEN_KEYWORD_CONST,
TOKEN_KEYWORD_IF,
TOKEN_KEYWORD_ELSE,
TOKEN_KEYWORD_WHILE,
TOKEN_KEYWORD_FOR,
TOKEN_KEYWORD_RETURN,
TOKEN_KEYWORD_USE,
TOKEN_KEYWORD_INIT,
TOKEN_KEYWORD_THIS,
TOKEN_KEYWORD_PRINT,
TOKEN_KEYWORD_NIL,
TOKEN_KEYWORD_TRUE,
TOKEN_KEYWORD_FALSE,
TOKEN_OPERATOR_IS,
TOKEN_OPERATOR_NOT,
TOKEN_OPERATOR_AND,
TOKEN_OPERATOR_OR,
TOKEN_BANG,
TOKEN_BANG_EQ,
TOKEN_EQ,
TOKEN_EQ_EQ,
TOKEN_GT,
TOKEN_LT,
TOKEN_GTE,
TOKEN_LTE,
TOKEN_DOT,
TOKEN_COMMA,
TOKEN_COLON,
TOKEN_SEMICOLON,
TOKEN_PLUS,
TOKEN_MINUS,
TOKEN_STAR,
TOKEN_SLASH,
TOKEN_LPAREN,
TOKEN_RPAREN,
TOKEN_LBRACE,
TOKEN_RBRACE,
TOKEN_LBRACKET,
TOKEN_RBRACKET,
TOKEN_ERROR
} TokenType;
typedef struct {
TokenType type;
const char *start;
int length;
int line;
} Token;
void initLexer(const char *source);
Token nextToken();
#endif

View File

@ -1,79 +1,83 @@
#ifndef ZRE_OPCODES_H
#define ZRE_OPCODES_H
#ifndef ZRL_OPCODES_H
#define ZRL_OPCODES_H
#include "common.h"
#include "fixed.h"
#include <stdint.h>
typedef enum {
OP_HALT, /* halt : terminate execution */
OP_JMP, /* jump : jump to address dest unconditionally */
OP_GET_PC, /* pc : dest = current program counter */
OP_CALL, /* call : creates a new frame */
OP_RETURN, /* retn : returns from a frame to the parent frame */
OP_LOAD, /* load : dest = &[next memory location] */
OP_STORE, /* stor : next memory location = src1 as float */
OP_PUSH, /* push : push str ref from register onto the stack and copy str */
OP_POP, /* pop : pop int from stack onto the register */
OP_REG_MOV, /* rmov : dest = src1 */
OP_REG_SWAP, /* rswp : dest = src1, src1 = dest */
OP_GET_ACC, /* gacc : dest = accumulator */
OP_MEM_SWAP, /* mswp : &dest = &src1, &src1 = &dest */
OP_MEM_MOV, /* mmov : &dest = &src1 */
OP_MEM_ALLOC, /* aloc : dest [next memory location as size] */
OP_GET, /* get : dest = ptr : dest = memory[ptr] */
OP_PUT, /* put : ptr = src1 : memory[ptr] = src */
OP_OFFSET, /* offs : dest = ptr + src1 : dest = p + o */
OP_SYSCALL, /* sysc : */
OP_ADD_INT, /* addi : dest = src1 + src2 */
OP_SUB_INT, /* subi : dest = src1 - src2 */
OP_MUL_INT, /* muli : dest = src1 * src2 */
OP_DIV_INT, /* divi : dest = src1 / src2 */
OP_ADD_UINT, /* addu : dest = src1 + src2 */
OP_SUB_UINT, /* subu : dest = src1 - src2 */
OP_MUL_UINT, /* mulu : dest = src1 * src2 */
OP_DIV_UINT, /* divu : dest = src1 / src2 */
OP_ADD_REAL, /* addr : dest = src1 + src2 */
OP_SUB_REAL, /* subr : dest = src1 - src2 */
OP_MUL_REAL, /* mulr : dest = src1 * src2 */
OP_DIV_REAL, /* divr : dest = src1 / src2 */
OP_INT_TO_REAL, /* itor : dest = src1 as real */
OP_UINT_TO_REAL, /* utor : dest = src1 as real */
OP_REAL_TO_INT, /* rtoi : dest = src1 as int */
OP_REAL_TO_UINT, /* rtou : dest = src1 as uint */
OP_JEQ_INT, /* jeqi : jump to address dest if src1 as int == src2 as int */
OP_JGT_INT, /* jgti : jump to address dest if src1 as int > src2 as int*/
OP_JLT_INT, /* jlti : jump to address dest if src1 as int < src2 as int */
OP_JLE_INT, /* jlei : jump to address dest if src1 as int <= src2 as int */
OP_JGE_INT, /* jgei : jump to address dest if src1 as int >= src2 as int*/
OP_JEQ_UINT, /* jequ : jump to address dest if src1 as int == src2 as uint */
OP_JGT_UINT, /* jgtu : jump to address dest if src1 as int > src2 as uint*/
OP_JLT_UINT, /* jltu : jump to address dest if src1 as int < src2 as uint */
OP_JLE_UINT, /* jleu : jump to address dest if src1 as int <= src2 as uint */
OP_JGE_UINT, /* jgeu : jump to address dest if src1 as int >= src2 as uint*/
OP_JEQ_REAL, /* jeqr : jump to address dest if src1 as real == src2 as real */
OP_JGE_REAL, /* jgtr : jump to address dest if src1 as real >= src2 as real */
OP_JGT_REAL, /* jltr : jump to address dest if src1 as real > src2 as real */
OP_JLT_REAL, /* jler : jump to address dest if src1 as real < src2 as real */
OP_JLE_REAL, /* jger : jump to address dest if src1 as real <= src2 as real */
OP_INT_TO_STRING, /* itos : dest = src1 as str */
OP_UINT_TO_STRING, /* utos : dest = src1 as str */
OP_REAL_TO_STRING, /* rtos : dest = src1 as str */
OP_CMP_STRING, /* cmps : dest = (str == src2) as bool */
OP_STRING_TO_INT, /* stoi : dest = src1 as int */
OP_STRING_TO_UINT, /* stou : dest = src1 as uint */
OP_STRING_TO_REAL, /* stor : dest = src1 as real */
OP_HALT, /* halt : terminate execution */
OP_JMP, /* jump : jump to address dest unconditionally */
OP_GET_PC, /* pc : dest = current program counter */
OP_CALL, /* call : creates a new frame */
OP_RETURN, /* retn : returns from a frame to the parent frame */
OP_LOAD, /* load : dest = &[next code location] */
OP_STORE, /* stor : next code location = src1 as float */
OP_PUSH, /* push : push str ref from register onto the stack and copy str */
OP_POP, /* pop : pop int from stack onto the register */
OP_REG_MOV, /* rmov : dest = src1 */
OP_REG_SWAP, /* rswp : dest = src1, src1 = dest */
OP_GET_ACC, /* gacc : dest = accumulator */
OP_MEM_SWAP, /* mswp : &dest = &src1, &src1 = &dest */
OP_MEM_MOV, /* mmov : &dest = &src1 */
OP_MEM_ALLOC, /* aloc : dest [next memory location as size] */
OP_GET, /* get : dest = ptr : dest = memory[ptr] */
OP_PUT, /* put : ptr = src1 : memory[ptr] = src */
OP_OFFSET, /* offs : dest = ptr + src1 : dest = p + o */
OP_SYSCALL, /* sysc : */
OP_ADD_INT, /* addi : dest = src1 + src2 */
OP_SUB_INT, /* subi : dest = src1 - src2 */
OP_MUL_INT, /* muli : dest = src1 * src2 */
OP_DIV_INT, /* divi : dest = src1 / src2 */
OP_ADD_UINT, /* addu : dest = src1 + src2 */
OP_SUB_UINT, /* subu : dest = src1 - src2 */
OP_MUL_UINT, /* mulu : dest = src1 * src2 */
OP_DIV_UINT, /* divu : dest = src1 / src2 */
OP_ADD_REAL, /* addr : dest = src1 + src2 */
OP_SUB_REAL, /* subr : dest = src1 - src2 */
OP_MUL_REAL, /* mulr : dest = src1 * src2 */
OP_DIV_REAL, /* divr : dest = src1 / src2 */
OP_INT_TO_REAL, /* itor : dest = src1 as real */
OP_UINT_TO_REAL, /* utor : dest = src1 as real */
OP_REAL_TO_INT, /* rtoi : dest = src1 as int */
OP_REAL_TO_UINT, /* rtou : dest = src1 as uint */
OP_JEQ_INT, /* jeqi : jump to address dest if src1 as int == src2 as int */
OP_JGT_INT, /* jgti : jump to address dest if src1 as int > src2 as int*/
OP_JLT_INT, /* jlti : jump to address dest if src1 as int < src2 as int */
OP_JLE_INT, /* jlei : jump to address dest if src1 as int <= src2 as int */
OP_JGE_INT, /* jgei : jump to address dest if src1 as int >= src2 as int*/
OP_JEQ_UINT, /* jequ : jump to address dest if src1 as int == src2 as uint */
OP_JGT_UINT, /* jgtu : jump to address dest if src1 as int > src2 as uint*/
OP_JLT_UINT, /* jltu : jump to address dest if src1 as int < src2 as uint */
OP_JLE_UINT, /* jleu : jump to address dest if src1 as int <= src2 as uint */
OP_JGE_UINT, /* jgeu : jump to address dest if src1 as int >= src2 as uint*/
OP_JEQ_REAL, /* jeqr : jump to address dest if src1 as real == src2 as real */
OP_JGE_REAL, /* jgtr : jump to address dest if src1 as real >= src2 as real */
OP_JGT_REAL, /* jltr : jump to address dest if src1 as real > src2 as real */
OP_JLT_REAL, /* jler : jump to address dest if src1 as real < src2 as real */
OP_JLE_REAL, /* jger : jump to address dest if src1 as real <= src2 as real */
OP_INT_TO_STRING, /* itos : dest = src1 as str */
OP_UINT_TO_STRING,/* utos : dest = src1 as str */
OP_REAL_TO_STRING,/* rtos : dest = src1 as str */
OP_CMP_STRING, /* cmps : dest = (str == src2) as bool */
OP_STRING_TO_INT, /* stoi : dest = src1 as int */
OP_STRING_TO_UINT,/* stou : dest = src1 as uint */
OP_STRING_TO_REAL,/* stor : dest = src1 as real */
/* to remove (replace with device), just for testing for now */
OP_DBG_PRINT_STRING, /* puts : write a string to stdout */
OP_DBG_READ_STRING, /* gets : read a string from stdin */
OP_DBG_PRINT_STRING,/* puts : write src1 as str to stdout */
OP_DBG_READ_STRING, /* gets : read to dest as str from stdin */
} Opcode;
/* defines a uint32 opcode */
#define OP(opcode, dest, src1, src2) \
((opcode << 24) | (dest << 16) | (src1 << 8) | (src2))
((opcode << 24) | (dest << 16) | (src1 << 8) | src2)
#define OP_SYSCALL_OPCODE(syscall_id, arg_count, src) \
((OP_SYSCALL << 24) | ((syscall_id & 0xFF) << 16) | (arg_count & 0xFF) | src)
typedef union value_u {
int32_t i; /* Integers */
float f; /* Float */
fixed_t f; /* Fixed point */
uint32_t u; /* Unsigned integers, also used for pointer address */
char c[4]; /* 4 Byte char array for string packing */
} Value;
@ -120,7 +124,7 @@ typedef struct device_s {
uint32_t flags; /* permissions, status, etc. */
} Device;
#define MEMORY_SIZE (640 * 480 + 65536)
#define MEMORY_SIZE ((640 * 480) + 65536)
#define CODE_SIZE 8192
#define FRAMES_SIZE 128
#define STACK_SIZE 256

View File

@ -2,34 +2,13 @@
#include "vm.h"
#include <string.h>
uint32_t real_alloc(VM *vm, float v) {
uint32_t addr = vm->mp;
vm->memory[vm->mp++].f = v;
vm->frames[vm->fp].allocated.end++;
return addr;
}
uint32_t nat_alloc(VM *vm, uint32_t v) {
uint32_t addr = vm->mp;
vm->memory[vm->mp++].u = v;
vm->frames[vm->fp].allocated.end++;
return addr;
}
uint32_t int_alloc(VM *vm, int32_t v) {
uint32_t addr = vm->mp;
vm->memory[vm->mp++].i = v;
vm->frames[vm->fp].allocated.end++;
return addr;
}
/* Array of test mappings */
struct TestMapping internal_tests[] = {
{"simple.ul", test_simple_compile},
{"loop.ul", test_loop_compile},
{"add.ul", test_add_function_compile},
{"fib.ul", test_recursive_function_compile},
{"window.ul", test_window_click_compile},
{"simple.zrl", test_add_compile},
{"loop.zrl", test_loop_compile},
{"add.zrl", test_add_function_compile},
{"fib.zrl", test_recursive_function_compile},
{"window.zrl", test_window_click_compile},
/* Add more test mappings here */
{NULL, NULL} /* Sentinel to mark end of array */
};
@ -44,10 +23,10 @@ bool compile_internal_test(const char* filename, VM* vm) {
return false;
}
bool test_simple_compile(VM *vm) {
bool test_add_compile(VM *vm) {
vm->code[vm->cp++].u = OP(OP_LOAD, 0, 0, 0);
vm->code[vm->cp++].u = nat_alloc(vm, 1);
vm->code[vm->cp++].u = OP(OP_LOAD, 1, 0, 0);
vm->code[vm->cp++].u = OP(OP_LOAD, 1, 1, 0);
vm->code[vm->cp++].u = nat_alloc(vm, 2);
vm->code[vm->cp++].u = OP(OP_ADD_UINT, 2, 1, 0); /* let sum = 1 + 2; */
vm->code[vm->cp++].u = OP(OP_UINT_TO_STRING, 3, 2, 0);
@ -60,23 +39,22 @@ bool test_loop_compile(VM *vm) {
vm->code[vm->cp++].u = OP(OP_LOAD, 0, 0, 0); /* let a = 5.0 */
vm->code[vm->cp++].u = real_alloc(vm, 5.0f);
vm->code[vm->cp++].u = OP(OP_LOAD, 1, 0, 0); /* do (i = 50000, 0, -1) { */
vm->code[vm->cp++].u = int_alloc(vm, 10000);
vm->code[vm->cp++].u = int_alloc(vm, 50000);
vm->code[vm->cp++].u = OP(OP_LOAD, 2, 0, 0); /* loop check value */
vm->code[vm->cp++].u = int_alloc(vm, 0);
vm->code[vm->cp++].u = OP(OP_LOAD, 3, 0, 0); /* loop incriment value */
vm->code[vm->cp++].u = int_alloc(vm, -1);
vm->code[vm->cp++].u = OP(OP_LOAD, 5, 0, 0); /* a */
vm->code[vm->cp++].u = real_alloc(vm, 5.0f);
vm->code[vm->cp++].u = OP(OP_LOAD, 4, 0, 0); /* loop start */
uint32_t addr = vm->cp + 1;
vm->code[vm->cp++].u = int_alloc(vm, addr);
vm->code[vm->cp++].u = OP(OP_LOAD, 5, 0, 0);
vm->code[vm->cp++].u = real_alloc(vm, 5.0f);
vm->code[vm->cp++].u = OP(OP_ADD_REAL, 0, 0, 5); /* a += 5.0; */
vm->code[vm->cp++].u = OP(OP_ADD_INT, 1, 1, 3); /* (implied by loop) i = i + (-1) */
vm->code[vm->cp++].u = OP(OP_JGE_INT, 4, 1, 2); /* } */
vm->code[vm->cp++].u = OP(OP_REAL_TO_UINT, 1, 0, 0); /* let b = a as nat; */
vm->code[vm->cp++].u = OP(OP_LOAD, 6, 0, 0);
uint32_t str_addr = str_alloc(vm, "Enter a string:", 16);
vm->code[vm->cp++].u = nat_alloc(vm, str_addr);
vm->code[vm->cp++].u = str_alloc(vm, "Enter a string:", 0);
vm->code[vm->cp++].u = OP(OP_DBG_PRINT_STRING, 0, 6, 0); /* print("Enter a string: "); */
vm->code[vm->cp++].u = OP(OP_DBG_READ_STRING, 2, 0, 0); /* let user_string = gets(); */
vm->code[vm->cp++].u = OP(OP_UINT_TO_STRING, 3, 1, 0);
@ -91,10 +69,11 @@ bool test_loop_compile(VM *vm) {
bool test_add_function_compile(VM *vm) {
/* fn main() */
vm->code[vm->cp++].u = OP(OP_LOAD, 0, 0, 0); /* 1 */
vm->code[vm->cp++].u = int_alloc(vm, 1);
uint32_t addr = int_alloc(vm, 1);
vm->code[vm->cp++].u = addr;
vm->code[vm->cp++].u = OP(OP_PUSH, 0, 0, 0);
vm->code[vm->cp++].u = OP(OP_LOAD, 0, 0, 0); /* 1 */
vm->code[vm->cp++].u = int_alloc(vm, 1);
vm->code[vm->cp++].u = addr;
vm->code[vm->cp++].u = OP(OP_PUSH, 0, 0, 0);
vm->code[vm->cp++].u = OP(OP_CALL, 0, 0, 0); /* ); */
vm->code[vm->cp++].u = 12;
@ -157,7 +136,7 @@ bool test_window_click_compile(VM *vm) {
/* Open screen device: R0=path, R1=mode */
vm->code[vm->cp++].u = OP(OP_LOAD, 0, 0, 0); /* R0 = screen path */
vm->code[vm->cp++].u = nat_alloc(vm, screen_path_addr);
vm->code[vm->cp++].u = screen_path_addr;
vm->code[vm->cp++].u = OP(OP_LOAD, 1, 0, 0); /* R1 = mode (0) */
vm->code[vm->cp++].u = int_alloc(vm, 0);
vm->code[vm->cp++].u = OP(OP_SYSCALL, SYSCALL_DEVICE_OPEN, 0, 2); /* syscall_id, first_reg=0, arg_count=2 */
@ -167,26 +146,22 @@ bool test_window_click_compile(VM *vm) {
/* Create simple test pixel data */
uint32_t test_pixel_addr = vm->mp;
vm->memory[vm->mp].c[0] = (char)((255 / 32) << 5) | ((0 / 32) << 2) | (0 / 64);
vm->memory[vm->mp].c[1] = (char)((255 / 32) << 5) | ((0 / 32) << 2) | (0 / 64);
vm->memory[vm->mp].c[2] = (char)((255 / 32) << 5) | ((0 / 32) << 2) | (0 / 64);
vm->memory[vm->mp++].c[3] = (char)((255 / 32) << 5) | ((0 / 32) << 2) | (0 / 64);
vm->frames[vm->fp].allocated.end++;
vm->memory[vm->mp++].u = 0x00FF0000;
/* Main loop to check for mouse input */
uint32_t loop_start = vm->cp;
/* Write to screen: R0=path, R1=buffer, R2=size */
vm->code[vm->cp++].u = OP(OP_LOAD, 0, 0, 0);
vm->code[vm->cp++].u = nat_alloc(vm, screen_path_addr);
vm->code[vm->cp++].u = screen_path_addr;
vm->code[vm->cp++].u = OP(OP_LOAD, 1, 0, 0);
vm->code[vm->cp++].u = nat_alloc(vm, test_pixel_addr);
vm->code[vm->cp++].u = test_pixel_addr;
vm->code[vm->cp++].u = OP(OP_LOAD, 2, 0, 0);
vm->code[vm->cp++].u = int_alloc(vm, 1);
vm->code[vm->cp++].u = OP(OP_SYSCALL, SYSCALL_DEVICE_WRITE, 0, 3); /* syscall_id, first_reg=0, arg_count=3 */
vm->code[vm->cp++].u = OP(OP_LOAD, 3, 0, 0);
vm->code[vm->cp++].u = nat_alloc(vm, loop_start);
vm->code[vm->cp++].u = loop_start;
vm->code[vm->cp++].u = OP(OP_JMP, 3, 0, 0); /* Infinite loop for testing */
vm->code[vm->cp++].u = OP(OP_HALT, 0, 0, 0);

View File

@ -1,5 +1,5 @@
#ifndef ZRE_TEST_H
#define ZRE_TEST_H
#ifndef ZRL_TEST_H
#define ZRL_TEST_H
#include "opcodes.h"
@ -13,7 +13,7 @@ struct TestMapping {
};
bool compile_internal_test(const char* filename, VM* vm);
bool test_simple_compile (VM *vm);
bool test_add_compile (VM *vm);
bool test_loop_compile (VM *vm);
bool test_add_function_compile(VM *vm);
bool test_recursive_function_compile(VM *vm);

363
src/vm.c
View File

@ -1,7 +1,8 @@
#include "vm.h"
#include "device.h"
#include "fixed.h"
#include "opcodes.h"
#include <string.h>
#include <stdint.h>
/* no inline fn in ANSI C :( */
#define COMPARE_AND_JUMP(type, accessor, op) \
@ -13,17 +14,6 @@
return true; \
} while (0)
#define MATH_OP(accessor, op) \
do { \
vm->frames[vm->fp].registers[dest].accessor = \
vm->frames[vm->fp] \
.registers[src1] \
.accessor op vm->frames[vm->fp] \
.registers[src2] \
.accessor; \
return true; \
} while (0)
/**
* Embeds a string into the VM
*/
@ -50,10 +40,125 @@ uint32_t str_alloc(VM *vm, const char *str, uint32_t length) {
vm->memory[str_addr].u = length;
vm->frames[vm->fp].allocated.end = vm->mp;
return str_addr;
}
uint32_t float_as_real_alloc(VM *vm, float v) {
uint32_t addr = vm->mp;
vm->memory[vm->mp++].f = float_to_fixed(v);
vm->frames[vm->fp].allocated.end++;
return addr;
}
uint32_t real_alloc(VM *vm, fixed_t v) {
uint32_t addr = vm->mp;
vm->memory[vm->mp++].f = v;
vm->frames[vm->fp].allocated.end++;
return addr;
}
uint32_t nat_alloc(VM *vm, uint32_t v) {
uint32_t addr = vm->mp;
vm->memory[vm->mp++].u = v;
vm->frames[vm->fp].allocated.end++;
return addr;
}
uint32_t int_alloc(VM *vm, int32_t v) {
uint32_t addr = vm->mp;
vm->memory[vm->mp++].i = v;
vm->frames[vm->fp].allocated.end++;
return addr;
}
#define MAX_LEN_INT32 12 /* -2147483648 plus null terminator */
#define MAX_LEN_UINT32 11 /* 4294967295 plus null terminator */
#define MAX_LEN_FIXED 20 /* Enough for fixed-point representation */
const char radix_set[11] = "0123456789";
/* Convert int32 to string */
uint32_t int_to_string(VM *vm, int32_t v) {
char buffer[MAX_LEN_INT32] = {0};
int32_t n = v;
bool neg = n < 0;
if (neg)
n = -n;
int i = MAX_LEN_INT32;
do {
buffer[--i] = radix_set[n % 10];
n /= 10;
} while (n > 0);
if (neg)
buffer[--i] = '-';
/* Ensure at least one digit is written for 0 */
if (v == 0)
buffer[--i] = '0';
uint32_t len = MAX_LEN_INT32 - i;
return str_alloc(vm, buffer + i, len);
}
/* Convert uint32 to string */
uint32_t nat_to_string(VM *vm, uint32_t v) {
char buffer[MAX_LEN_INT32] = {0};
uint32_t n = v;
int i = MAX_LEN_INT32;
do {
buffer[--i] = radix_set[n % 10];
n /= 10;
} while (n > 0);
/* Ensure at least one digit is written for 0 */
if (v == 0)
buffer[--i] = '0';
uint32_t len = MAX_LEN_INT32 - i;
return str_alloc(vm, buffer + i, len);
}
/* Convert fixed-point to string */
uint32_t real_to_string(VM *vm, fixed_t q) {
char buffer[MAX_LEN_FIXED] = {0};
/* Extract integer part (top 16 bits) */
int32_t int_part = q >> 16;
/* Extract fractional part (bottom 16 bits) */
int32_t frac_part = q & 0xFFFF;
int32_t n = frac_part;
bool neg = n < 0;
if (neg)
n = -n;
int i = MAX_LEN_FIXED;
do {
buffer[--i] = radix_set[n % 10];
n /= 10;
} while (n > 0);
if (neg)
buffer[--i] = '-';
/* Ensure at least one digit is written for 0 */
if (frac_part == 0)
buffer[--i] = '0';
/* Convert integer part to string (reverse order) */
do {
buffer[--i] = radix_set[int_part % 10];
int_part /= 10;
} while (int_part > 0);
/* Ensure at least one digit is written for 0 */
if (int_part == 0)
buffer[--i] = '0';
/* Null-terminate */
buffer[i] = '\0';
int32_t len = (MAX_LEN_INT32 - i);
printf("i=%d, len=%d", i, len);
return str_alloc(vm, buffer + i, len);
}
/**
* Step to the next opcode in the vm.
*/
@ -116,11 +221,13 @@ bool step_vm(VM *vm) {
return true;
}
case OP_PUSH: {
vm->stack[++vm->sp] = vm->frames[vm->fp].registers[dest];
Value v = vm->frames[vm->fp].registers[dest];
vm->stack[++vm->sp] = v;
return true;
}
case OP_POP: {
vm->frames[vm->fp].registers[dest] = vm->stack[vm->sp--];
Value v = vm->stack[vm->sp--];
vm->frames[vm->fp].registers[dest] = v;
return true;
}
case OP_MEM_ALLOC: {
@ -148,31 +255,6 @@ bool step_vm(VM *vm) {
vm->memory[dest_addr].u ^= vm->memory[src_addr].u;
return true;
}
case OP_REG_SWAP: {
vm->frames[vm->fp].registers[dest].u ^=
vm->frames[vm->fp].registers[src1].u;
vm->frames[vm->fp].registers[src1].u ^=
vm->frames[vm->fp].registers[dest].u;
vm->frames[vm->fp].registers[dest].u ^=
vm->frames[vm->fp].registers[src1].u;
return true;
}
case OP_REG_MOV: {
vm->frames[vm->fp].registers[dest].i = vm->frames[vm->fp].registers[src1].i;
return true;
}
case OP_GET_ACC: {
vm->frames[vm->fp].registers[dest].u = vm->acc;
return true;
}
case OP_GET_PC: {
vm->frames[vm->fp].registers[dest].u = vm->pc;
return true;
}
case OP_JMP: {
vm->pc = vm->frames[vm->fp].registers[dest].u; /* Jump to address */
return true;
}
case OP_SYSCALL: {
uint32_t syscall_id = dest;
uint32_t arg_count = src2;
@ -324,48 +406,123 @@ bool step_vm(VM *vm) {
}
return true;
}
case OP_ADD_INT:
MATH_OP(i, +);
case OP_SUB_INT:
MATH_OP(i, -);
case OP_MUL_INT:
MATH_OP(i, *);
case OP_DIV_INT:
MATH_OP(i, /);
case OP_ADD_UINT:
MATH_OP(u, +);
case OP_SUB_UINT:
MATH_OP(u, -);
case OP_MUL_UINT:
MATH_OP(u, *);
case OP_DIV_UINT:
MATH_OP(u, /);
case OP_ADD_REAL:
MATH_OP(f, +);
case OP_SUB_REAL:
MATH_OP(f, -);
case OP_MUL_REAL:
MATH_OP(f, *);
case OP_DIV_REAL:
MATH_OP(f, /);
case OP_ADD_INT: {
vm->frames[vm->fp].registers[dest].i =
vm->frames[vm->fp].registers[src1].i +
vm->frames[vm->fp].registers[src2].i;
return true;
}
case OP_SUB_INT:{
vm->frames[vm->fp].registers[dest].i =
vm->frames[vm->fp].registers[src1].i -
vm->frames[vm->fp].registers[src2].i;
return true;
}
case OP_MUL_INT:{
vm->frames[vm->fp].registers[dest].i =
vm->frames[vm->fp].registers[src1].i *
vm->frames[vm->fp].registers[src2].i;
return true;
}
case OP_DIV_INT:{
vm->frames[vm->fp].registers[dest].i =
vm->frames[vm->fp].registers[src1].i /
vm->frames[vm->fp].registers[src2].i;
return true;
}
case OP_ADD_UINT:{
vm->frames[vm->fp].registers[dest].u =
vm->frames[vm->fp].registers[src1].u +
vm->frames[vm->fp].registers[src2].u;
return true;
}
case OP_SUB_UINT:{
vm->frames[vm->fp].registers[dest].u =
vm->frames[vm->fp].registers[src1].u -
vm->frames[vm->fp].registers[src2].u;
return true;
}
case OP_MUL_UINT:{
vm->frames[vm->fp].registers[dest].u =
vm->frames[vm->fp].registers[src1].u *
vm->frames[vm->fp].registers[src2].u;
return true;
}
case OP_DIV_UINT:{
vm->frames[vm->fp].registers[dest].u =
vm->frames[vm->fp].registers[src1].u /
vm->frames[vm->fp].registers[src2].u;
return true;
}
case OP_ADD_REAL:{
vm->frames[vm->fp].registers[dest].f =
fixed_add(vm->frames[vm->fp].registers[src1].f,
vm->frames[vm->fp].registers[src2].f);
return true;
}
case OP_SUB_REAL:{
vm->frames[vm->fp].registers[dest].f =
fixed_sub(vm->frames[vm->fp].registers[src1].f,
vm->frames[vm->fp].registers[src2].f);
return true;
}
case OP_MUL_REAL: {
vm->frames[vm->fp].registers[dest].f =
fixed_mul(vm->frames[vm->fp].registers[src1].f,
vm->frames[vm->fp].registers[src2].f);
return true;
}
case OP_DIV_REAL: {
vm->frames[vm->fp].registers[dest].f =
fixed_div(vm->frames[vm->fp].registers[src1].f,
vm->frames[vm->fp].registers[src2].f);
return true;
}
case OP_REAL_TO_INT: {
vm->frames[vm->fp].registers[dest].i =
(int32_t)(vm->frames[vm->fp].registers[src1].f);
fixed_to_int(vm->frames[vm->fp].registers[src1].f);
return true;
}
case OP_INT_TO_REAL: {
vm->frames[vm->fp].registers[dest].f =
(float)(vm->frames[vm->fp].registers[src1].i);
int_to_fixed(vm->frames[vm->fp].registers[src1].i);
return true;
}
case OP_REAL_TO_UINT: {
fixed_t f = vm->frames[vm->fp].registers[src1].f;
int32_t i = fixed_to_int(f);
vm->frames[vm->fp].registers[dest].u =
(uint32_t)(vm->frames[vm->fp].registers[src1].f);
(uint32_t)i;
return true;
}
case OP_UINT_TO_REAL: {
vm->frames[vm->fp].registers[dest].f =
(float)(vm->frames[vm->fp].registers[src1].u);
int_to_fixed(vm->frames[vm->fp].registers[src1].u);
return true;
}
case OP_REG_SWAP: {
vm->frames[vm->fp].registers[dest].u ^=
vm->frames[vm->fp].registers[src1].u;
vm->frames[vm->fp].registers[src1].u ^=
vm->frames[vm->fp].registers[dest].u;
vm->frames[vm->fp].registers[dest].u ^=
vm->frames[vm->fp].registers[src1].u;
return true;
}
case OP_REG_MOV: {
vm->frames[vm->fp].registers[dest].i = vm->frames[vm->fp].registers[src1].i;
return true;
}
case OP_GET_ACC: {
vm->frames[vm->fp].registers[dest].u = vm->acc;
return true;
}
case OP_JMP: {
vm->pc = vm->frames[vm->fp].registers[dest].u; /* Jump to address */
return true;
}
case OP_GET_PC: {
vm->frames[vm->fp].registers[dest].u = vm->pc;
return true;
}
case OP_JEQ_UINT: {
@ -402,63 +559,51 @@ bool step_vm(VM *vm) {
COMPARE_AND_JUMP(int32_t, i, ==);
}
case OP_JGT_REAL: {
COMPARE_AND_JUMP(float, u, >);
fixed_t value = vm->frames[vm->fp].registers[src1].f;
fixed_t value2 = vm->frames[vm->fp].registers[src2].f;
vm->pc =
fixed_gt(value, value2) ? vm->frames[vm->fp].registers[dest].u : vm->pc;
return true;
}
case OP_JLT_REAL: {
COMPARE_AND_JUMP(float, u, <);
fixed_t value = vm->frames[vm->fp].registers[src1].f;
fixed_t value2 = vm->frames[vm->fp].registers[src2].f;
vm->pc =
fixed_lt(value, value2) ? vm->frames[vm->fp].registers[dest].u : vm->pc;
return true;
}
case OP_JGE_REAL: {
COMPARE_AND_JUMP(float, u, >=);
fixed_t value = vm->frames[vm->fp].registers[src1].f;
fixed_t value2 = vm->frames[vm->fp].registers[src2].f;
vm->pc =
fixed_ge(value, value2) ? vm->frames[vm->fp].registers[dest].u : vm->pc;
return true;
}
case OP_JLE_REAL: {
COMPARE_AND_JUMP(float, u, <=);
fixed_t value = vm->frames[vm->fp].registers[src1].f;
fixed_t value2 = vm->frames[vm->fp].registers[src2].f;
vm->pc =
fixed_le(value, value2) ? vm->frames[vm->fp].registers[dest].u : vm->pc;
return true;
}
case OP_INT_TO_STRING: {
int32_t a = (int32_t)vm->frames[vm->fp].registers[src1].i; /* get value */
char buffer[32];
int len = sprintf(buffer, "%d", a);
uint32_t ptr = str_alloc(vm, buffer, len); /* copy buffer to dest */
int32_t a = vm->frames[vm->fp].registers[src1].i;
uint32_t ptr = int_to_string(vm, a);
vm->frames[vm->fp].registers[dest].u = ptr;
return true;
}
case OP_UINT_TO_STRING: {
uint32_t a = (uint32_t)vm->frames[vm->fp].registers[src1].u; /* get value */
char buffer[32];
int len = sprintf(buffer, "%d", a);
uint32_t ptr = str_alloc(vm, buffer, len); /* copy buffer to dest */
uint32_t a = vm->frames[vm->fp].registers[src1].u;
uint32_t ptr = nat_to_string(vm, a);
vm->frames[vm->fp].registers[dest].u = ptr;
return true;
}
case OP_REAL_TO_STRING: {
float a = (float)vm->frames[vm->fp].registers[src1].f; /* get value */
char buffer[32];
int len = sprintf(buffer, "%f", a);
uint32_t ptr = str_alloc(vm, buffer, len); /* copy buffer to dest */
fixed_t a = vm->frames[vm->fp].registers[src1].f;
uint32_t ptr = real_to_string(vm, a);
vm->frames[vm->fp].registers[dest].u = ptr;
return true;
}
case OP_STRING_TO_INT: {
uint32_t src_addr = (uint32_t)vm->frames[vm->fp].registers[src1].u;
uint32_t dest_addr = (uint32_t)vm->frames[vm->fp].registers[dest].u;
char *endptr;
int32_t value = (int32_t)strtol((char*)&vm->memory[src_addr + 1], &endptr, 10);
vm->memory[dest_addr].i = value;
return true;
}
case OP_STRING_TO_UINT: {
uint32_t src_addr = (uint32_t)vm->frames[vm->fp].registers[src1].u;
uint32_t dest_addr = (uint32_t)vm->frames[vm->fp].registers[dest].u;
long value = atol((char*)&vm->memory[src_addr + 1]);
vm->memory[dest_addr].u = value;
return true;
}
case OP_STRING_TO_REAL: {
uint32_t src_addr = (uint32_t)vm->frames[vm->fp].registers[src1].u;
uint32_t dest_addr = (uint32_t)vm->frames[vm->fp].registers[dest].u;
float value = atof((char*)&vm->memory[src_addr + 1]);
vm->memory[dest_addr].u = value;
return true;
}
case OP_DBG_READ_STRING: {
uint32_t str_addr = vm->mp++;
uint32_t length = 0;
@ -488,7 +633,7 @@ bool step_vm(VM *vm) {
return true;
}
case OP_DBG_PRINT_STRING: {
uint32_t ptr = (uint32_t)vm->frames[vm->fp].registers[src1].u;
uint32_t ptr = vm->frames[vm->fp].registers[src1].u;
uint32_t length = vm->memory[ptr].u;
uint32_t str_src = ptr + 1;
uint32_t i;
@ -502,8 +647,8 @@ bool step_vm(VM *vm) {
return true;
}
case OP_CMP_STRING: {
uint32_t addr1 = (uint32_t)vm->frames[vm->fp].registers[src1].u;
uint32_t addr2 = (uint32_t)vm->frames[vm->fp].registers[src2].u;
uint32_t addr1 = vm->frames[vm->fp].registers[src1].u;
uint32_t addr2 = vm->frames[vm->fp].registers[src2].u;
uint32_t length1 = vm->memory[addr1 - 1].u;
uint32_t length2 = vm->memory[addr2 - 1].u;
uint32_t equal =

View File

@ -1,9 +1,14 @@
#ifndef ZRE_VM_H
#define ZRE_VM_H
#ifndef ZRL_VM_H
#define ZRL_VM_H
#include "opcodes.h"
VM* init_vm();
bool step_vm(VM *vm);
uint32_t str_alloc(VM *vm, const char *str, uint32_t length);
uint32_t float_as_real_alloc(VM *vm, float v);
uint32_t real_alloc(VM *vm, fixed_t v);
uint32_t nat_alloc(VM *vm, uint32_t v);
uint32_t int_alloc(VM *vm, int32_t v);
#endif

View File

@ -1,5 +0,0 @@
hello:
"nuqneH 'u'?"
puts &hello
halt

1
test/hello.lisp Normal file
View File

@ -0,0 +1 @@
(puts "nuqneH 'u'?")

View File

@ -1,8 +1 @@
function main(int argc, str[] argv) {
str name = "World";
if argc > 1 {
name = argv[1];
}
print("Hello, {name}!");
exits("Done");
}
print("nuqneH 'u'?");

View File

@ -37,5 +37,5 @@ print_section "zlc ($FILENAME.zl)"
echo "test input" | time zlc "$FILENAME.zl"
# ZRE Implementation
print_section "zre ($FILENAME.ul)"
echo "test input" | time ../src/zre -t "$FILENAME.ul"
print_section "zre ($FILENAME.zrl)"
echo "test input" | time ../src/zre -t "$FILENAME.zrl"